# **SV660P Series Servo Drive Hardware Guide**



## **Preface**

#### Overview

The SV660P series high-performance AC servo drive covers a power range from 50 W to 7.5 kW. It supports Modbus, CANopen and CANlink communication protocols and carries necessary communication interfaces to work with the host controller for a networked operation of multiple servo drives.

The SV660P series servo drive supports adaptive stiffness level setting, inertia auto-tuning, and vibration suppression to simplify the operation process. It allows a quiet and stable operation and accurate positioning control together with an  $MS1_{h-series}$  hig response servo motor with small or medium inertia and a 23-bit bit single-turn or 23- multi-turn absolute encoder.

The SV660P series servo drive serves to achieve quick and accurate position control, speed control and torque control in automation equipment such as electronic manufacturing devices, manipulators, packing devices, and machine tools.

This guide introduces installation and wiring of the servo drive, including preparations before installation, unpacking inspection and transportation, wiring, and routine maintenance.

#### **More Documents**

| Name                                          | Data Code |
|-----------------------------------------------|-----------|
| SV660P Series Servo Drive Selection Guide     | 19011390  |
| SV660P Series Servo Drive Commissioning Guide | 19011392  |
| SV660P Series Servo Drive Function Guide      | 19011393  |

#### **Revision History**

| Date of Revision | Version | Revision      |
|------------------|---------|---------------|
| January 2021     | A00     | First release |

#### **Document Acquisition**

The guide is not delivered along with the product. You can download the PDF version from <a href="http://en.inovance.cn/support/download.html">http://en.inovance.cn/support/download.html</a>.

## **Table of Contents**

| Pre | eface |                                                                         | 1    |
|-----|-------|-------------------------------------------------------------------------|------|
| Fu  | ndam  | nental Safety Instructions                                              | 5    |
| 1   | Prod  | duct Information                                                        | . 11 |
|     | 1.1   | Nameplate and Model Number of the Servo Drive                           | . 11 |
|     | 1.2   | Nameplate and Model Number of the Servo Motor                           | . 12 |
|     | 1.3   | Model Number of Cables                                                  | . 13 |
|     | 1.4   | Components                                                              | . 15 |
|     |       | 1.4.1 Servo Drives in Size A (Rated Power: 200 W to 400 W)              |      |
|     |       | 1.4.2 Servo Drives in Size B (Rated Power: 750 W)                       |      |
|     |       | 1.4.3 Servo Drives in Size C and Size D (Rated Power: 1.0 kW to 3.0 kW) |      |
|     |       | 1.4.4 Servo Drives in Size E (Rated Power: 5.0 kW to 7.5 kW)            |      |
|     |       | 1.4.5       Servo Motors in Flange Sizes 40/60/80                       |      |
| 2   |       | allation                                                                |      |
| 2   |       |                                                                         |      |
|     | 2.1   | Installing the Servo Drive.                                             |      |
|     |       | 2.1.1 Unpacking Inspection                                              |      |
|     |       | 2.1.3 Installation Clearance.                                           |      |
|     |       | 2.1.4 Installation Dimensions                                           |      |
|     |       | 2.1.5 Installation Precautions                                          | . 35 |
|     |       | 2.1.6 Installation Instructions                                         | . 36 |
|     | 2.2   | Installing the Servo Motor                                              |      |
|     |       | 2.2.1 Unpacking Inspection                                              |      |
|     |       | 2.2.2 Installation Environment                                          |      |
|     |       | Installation Dimensions                                                 |      |
|     | 0.0   |                                                                         |      |
|     | 2.3   | Installing the Optional Parts                                           |      |
|     |       | 2.3.1 Instructions for the installing ruse and Circuit Breaker          |      |
|     |       | 2.3.3 Instructions for Installing the EMC Filter                        |      |
|     |       | 2.3.4 Instructions for Installing Magnetic Ring and Ferrite Clamp       |      |
| 3   | Wirir | ng                                                                      | . 55 |
|     | 3.1   | Wiring Precautions                                                      | . 55 |
|     | 3.2   | System Wiring Diagram                                                   | . 57 |
|     | 3.3   | Wiring Diagram for Different Control Modes                              |      |
|     |       | 3.3.1 Wiring Diagram for Position Control Mode                          |      |
|     |       | 3.3.2 Wiring Diagram for Torque Control Mode                            |      |
|     | 3.4   | Terminal Layout of the Servo Drive                                      | . 67 |

|   |      | 3.4.1          | Main Circuit Terminal Pin Layout                 |      |
|---|------|----------------|--------------------------------------------------|------|
|   |      | 3.4.2          | Description of Encoder Terminal (CN2)            | . 77 |
|   |      | 3.4.3          | Description of the Control Terminal (CN1)        | . 78 |
|   |      | 3.4.4          | Description of Communication Terminals (CN3/CN4) | . 81 |
|   | 3.5  | Conne          | ecting the Power supply (RST)                    |      |
|   |      | 3.5.1          | Wiring Precautions                               |      |
|   |      | 3.5.2          | Main Circuit Wiring Requirements                 |      |
|   |      | 3.5.3          | Recommended Cable Specifications and Models      |      |
|   |      | 3.5.4<br>3.5.5 | Wiring of the Power Supply                       |      |
|   |      | 3.5.6          | Grounding and Wiring                             |      |
|   | 2.0  |                | ecting the Motor (UVW)                           |      |
|   | 3.6  |                | 5                                                |      |
|   | 3.7  |                | ecting the Encoder (CN2)                         |      |
|   |      | 3.7.1<br>3.7.2 | Installing Absolute Encoder Battery Box          |      |
|   | 2.0  |                |                                                  |      |
|   | 3.8  | 3.8.1          | ecting the Control Signal (CN1)                  |      |
|   |      | 3.8.2          | Position Reference Input Signals                 |      |
|   |      | 3.8.3          | DI/DO Signals.                                   |      |
|   |      | 3.8.4          | Encoder Frequency-Division Output Signals        |      |
|   |      | 3.8.5          | Wiring of the Brake                              |      |
|   | 3.9  | Conne          | ecting the Communication Signals (CN3/CN4)       | 126  |
|   |      |                | CAN Communication Connection                     |      |
|   |      | 3.9.2          | 8                                                |      |
|   |      | 3.9.3          | Wiring of RS232 Communication with PC            | 131  |
|   | 3.10 | Wirir          | ng and Setting of the Regenerative Resistor      | 132  |
| 1 | Main | tenand         | ce                                               | 139  |
|   | 4.1  | Routir         | ne Maintenance                                   | 139  |
|   |      |                | Routine Checklist                                |      |
|   |      | 4.1.2          | Routine Cleaning List                            | 139  |
|   | 4.2  | Perio          | dic Maintenance                                  | 140  |
|   |      | 4.2.1          | Periodic Checklist                               |      |
|   |      | 4.2.2          | Periodic Maintenance List                        | 140  |
|   | 4.3  | Parts          | Replacement                                      | 141  |
|   |      |                | Disassembling the Motor Flat Key                 |      |
|   |      |                | Disassembling the Motor Oil Seal                 |      |
| 5 | Appe | endix 1        | Certifications and Standards Compliance          | 144  |
|   | 5.1  | Comp           | liance List                                      | 144  |
|   | 5.2  | CE Ce          | rtification                                      | 144  |
|   |      |                | Requirement for Compliance with EMC Directive    |      |
|   |      | 5.2.2          | Requirements for Compliance with LVD             | 146  |

|   | 5.3 | UL&cUL Certification                             | 147 |
|---|-----|--------------------------------------------------|-----|
| 6 | Арр | endix 2 Common EMC Problems and Solutions        | 151 |
|   | 6.1 | Malfunction of the Residual Current Device (RCD) | 151 |
|   | 6.2 | Harmonic Suppression                             | 152 |
|   | 6.3 | Control Circuit Interference                     | 152 |
|   |     | 6.3.1 High-speed Pulse Interference              | 152 |
|   |     | 6.3.2 I/O Signal Interference                    | 153 |
|   | 6.4 | RS485&CAN Communication Interference             | 154 |

## **Fundamental Safety Instructions**

#### **Safety Precautions**

- This chapter presents essential safety instructions for a proper use of the
  equipment. Before operating the equipment, read through the user guide and
  comprehend all the safety instructions. Failure to comply with the safety
  instructions may result in death, severe personal injuries, or equipment damage.
- 2. "CAUTION", "WARNING", and "DANGER" items in the user guide only indicate some of the precautions that need to be followed; they just supplement the safety precautions.
- 3. Use this equipment according to the designated environment requirements. Damage caused by improper use is not covered by warranty.
- 4. Inovance shall take no responsibility for any personal injuries or property damage caused by improper use.

#### **Safety Levels and Definitions**



Indicates that failure to comply with the notice will result in death or severe personal injuries.



Indicates that failure to comply with the notice may result in death or severe personal injuries.



Indicates that failure to comply with the notice may result in minor or moderate personal injuries or equipment damage.

### **General Safety Instructions**

- Drawings in the user guide are sometimes shown without covers or protective guards. Remember to install the covers or protective guards as specified first, and then perform operations in accordance with the instructions.
- The drawings in the user guide are shown for illustration only and may be different from the product you purchased.

#### Unpacking



- Do not install the equipment if you find damage, rust, or signs of use on the equipment or accessories upon unpacking.
- Do not install the equipment if you find water seepage or missing or damaged components upon unpacking.
- Do not install the equipment if you find the packing list does not conform to the equipment you received.



- Check whether the packing is intact and whether there is damage, water seepage, dampness, and deformation before unpacking.
- Unpack the package by following the unpacking sequence. Do not strike the package violently.
- Check whether there is damage, rust, or injuries on the surface of the equipment and equipment accessories before unpacking.
- Check whether the package contents are consistent with the packing list before unpacking.

#### **Storage and Transportation**



- Large-scale or heavy equipment must be transported by qualified professionals using specialized hoisting equipment. Failure to comply may result in personal injuries or equipment damage.
- Before hoisting the equipment, ensure the equipment components such as the front cover and terminal blocks are secured firmly with screws. Loosely-connected components may fall off and result in personal injuries or equipment damage.
- Never stand or stay below the equipment when the equipment is being hoisted by the hoisting equipment.
- When hoisting the equipment with a steel rope, ensure the equipment is hoisted at a
  constant speed without suffering from vibration or shock. Do not turn the equipment
  over or let the equipment stay hanging in the air. Failure to comply may result in
  personal injuries or equipment damage.



- Handle the equipment with care during transportation and mind your steps to prevent personal injuries or equipment damage.
- When carrying the equipment with bare hands, hold the equipment casing firmly with care to prevent parts from falling. Failure to comply may result in personal injuries.
- Store and transport the equipment based on the storage and transportation requirements. Failure to comply will result in equipment damage.
- Avoid storing or transporting the equipment in environments with water splash, rain, direct sunlight, strong electric field, strong magnetic field, and strong vibration.
- Avoid storing the equipment for more than three months. Long-term storage requires stricter protection and necessary inspections.
- Pack the equipment strictly before transportation. Use a sealed box for long-distance transportation.
- Never transport the equipment with other equipment or materials that may harm or have negative impacts on this equipment.

#### Installation



• The equipment must be operated only by professionals with electrical knowledge.



- Read through the user guide and safety instructions before installation.
- Do not install this equipment in places with strong electric or magnetic fields.
- Before installation, check that the mechanical strength of the installation site can bear the weight of the equipment. Failure to comply will result in mechanical hazards.
- Do not wear loose clothes or accessories during installation. Failure to comply may result in an electric shock.
- When installing the equipment in a closed environment (such as a cabinet or casing), use a cooling device (such as a fan or air conditioner) to cool the environment down to the required temperature. Failure to comply may result in equipment over-temperature or a fire.
- Do not retrofit the equipment.
- Do not fiddle with the bolts used to fix equipment components or the bolts marked in red.
- When the equipment is installed in a cabinet or final assembly, a fireproof enclosure
  providing both electrical and mechanical protections must be provided. The IP rating
  must meet IEC standards and local laws and regulations.
- Before installing devices with strong electromagnetic interference, such as a transformer, install a shielding device for the equipment to prevent malfunction.
- Install the equipment onto an incombustible object such as a metal. Keep the
  equipment away from combustible objects. Failure to comply will result in a fire.



- Cover the top of the equipment with a piece of cloth or paper during installation. This is
  to prevent unwanted objects such as metal chippings, oil, and water from falling into the
  equipment and causing faults. After installation, remove the cloth or paper on the top of
  the equipment to prevent over-temperature caused by poor ventilation due to blocked
  ventilation holes.
- Resonance may occur when the equipment operating at a constant speed executes variable speed operations. In this case, install the vibration-proof rubber under the motor frame or use the vibration suppression function to reduce resonance.

#### Wiring



#### DANGER

- Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.
- Before wiring, cut off all the power supplies of the equipment, and wait for at least the
  time designated on the equipment warning label before further operations because
  residual voltage still exists after power-off. After waiting for the designated time,
  measure the DC voltage in the main circuit to ensure the DC voltage is within the safe
  voltage range. Failure to comply will result in an electric shock.
- Do not perform wiring, remove the equipment cover, or touch the circuit board with power ON. Failure to comply will result in an electric shock.
- Check that the equipment is grounded properly. Failure to comply will result in an electric shock.



- Do not connect the input power supply to the output end of the equipment. Failure to comply will result in equipment damage or even a fire.
- When connecting a drive to the motor, check that the phase sequences of the drive and motor terminals are consistent to prevent reverse motor rotation.
- Cables used for wiring must meet cross sectional area and shielding requirements. The shield of the cable must be reliably grounded at one end.
- Fix the terminal screws with the tightening torque specified in the user guide. Improper tightening torque may overheat or damage the connecting part, resulting in a fire.
- After wiring is done, check that all cables are connected properly, with no screws, washers, or exposed cables left inside the equipment. Failure to comply may result in an electric shock or equipment damage.



- During wiring, follow the proper electrostatic discharge (ESD) procedure, and wear an antistatic wrist strap. Failure to comply will damage the equipment or the internal circuits of the equipment.
- Use shielded twisted pairs for the control circuit. Connect the shield to the grounding terminal of the equipment for grounding purpose. Failure to comply will result in equipment malfunction.

#### Power-on



#### **DANGER**

- Before power-on, check that the equipment is installed properly with reliable wiring and the motor can be restarted.
- Check that the power supply meets equipment requirements before power-on to prevent equipment damage or a fire.
- After power-on, do not open the cabinet door or protective cover of the equipment, touch any terminal, or disassemble any unit or component of the equipment. Failure to comply will result in an electric shock.



- Perform a trial run after wiring and parameter setting to ensure the equipment operates safely. Failure to comply may result in personal injuries or equipment damage.
- Before power-on, check that the rated voltage of the equipment is consistent with that of the power supply. Failure to comply may result in a fire.
- Before power-on, check that no one is near the equipment, motor, or machine. Failure to comply may result in death or personal injuries.

#### Operation



#### **DANGER**

- The equipment must be operated only by professionals. Failure to comply will result in death or personal injuries.
- Do not touch any connecting terminals or disassemble any unit or component of the equipment during operation. Failure to comply will result in an electric shock.



- Do not touch the equipment casing, fan, or resistor with bare hands to feel the temperature. Failure to comply may result in personal injuries.
- Prevent metal or other objects from falling into the equipment during operation. Failure to comply may result in a fire or equipment damage.

#### Maintenance



- Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.
- Do not maintain the equipment with power ON. Failure to comply will result in an electric shock.
- Before maintenance, cut off all the power supplies of the equipment and wait for at least the time designated on the equipment warning label.
- In case of a permanent magnet motor, do not touch the motor terminals immediately
  after power-off because the motor terminals will generate induced voltage during
  rotation even after the equipment power supply is off. Failure to comply will result in an
  electric shock.



 Perform routine and periodic inspection and maintenance on the equipment according to maintenance requirements and keep a maintenance record.

#### Repair



#### DANGER

- Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.
- Do not repair the equipment with power ON. Failure to comply will result in an electric shock.
- Before inspection and repair, cut off all the power supplies of the equipment and wait for at least the time designated on the equipment warning label.



- When the fuse is blown or the circuit breaker or earth leakage current breaker (ELCB) trips, wait for at least the time designated on the equipment warning label before power-on or further operations. Failure to comply may result in death, personal injuries, or equipment damage.
- When the equipment is faulty or damaged, the troubleshooting and repair work must be performed by professionals that follow the repair instructions, with repair records kept properly.
- Replace quick-wear parts of the equipment according to the replacement instructions.
- Do not use damaged equipment. Failure to comply may result in death, personal injuries, or severe equipment damage.
- After the equipment is replaced, check the wiring and set parameters again.

#### Disposal



- Dispose of retired equipment in accordance with local regulations and standards. Failure to comply may result in property damage, personal injuries, or even death.
- Recycle retired equipment by observing industry waste disposal standards to avoid environmental pollution.

## **Safety Labels**

For safe equipment operation and maintenance, comply with the safety labels on the equipment. Do not damage or remove the safety labels. See the following table for descriptions of the safety labels.

| Safety Label                               | Description                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | <ul> <li>Read through the safety instructions before operating the equipment. Failure to comply may result in death, personal injuries, or equipment damage.</li> <li>Do not touch the terminals or remove the cover with power ON or within 10 min after power-off. Failure to comply will result in an electric shock.</li> </ul> |

## 1 Product Information

## 1.1 Nameplate and Model Number of the Servo Drive

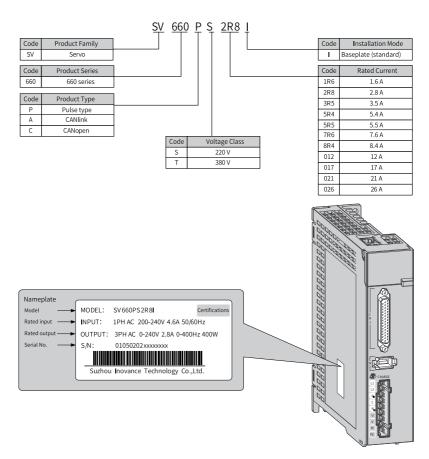
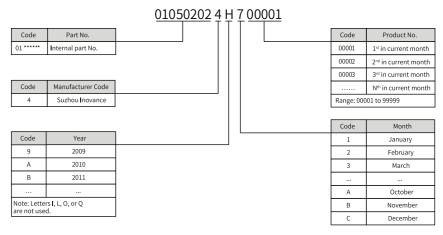




Figure 1-1 Nameplate and model number of the servo drive



Example: The serial number 010502024H700001 indicates the servo drive is manufatured in July 2017.

Figure 1-2 Encryption of the production serial number

## 1.2 Nameplate and Model Number of the Servo Motor

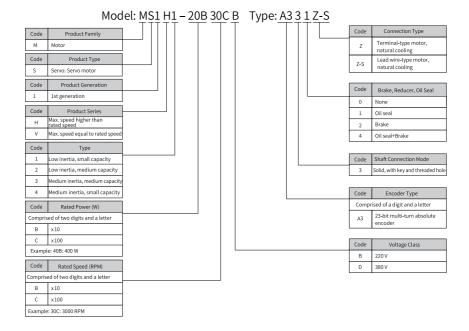





Figure 1-3 Nameplate and model number of the servo motor

## Note

SV660P series servo drives can work with the servo motor configured with a 23-bit single-turn or multi-turn absolute encoder.

## 1.3 Model Number of Cables

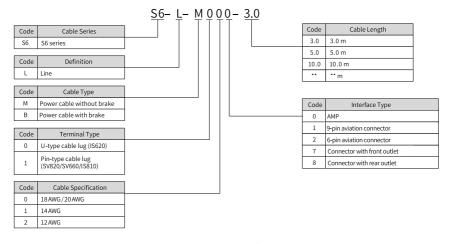



Figure 1-4 Model number of power cables

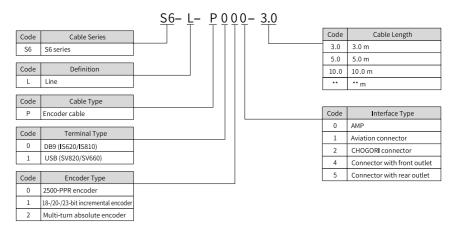



Figure 1-5 Model number of encoder cables

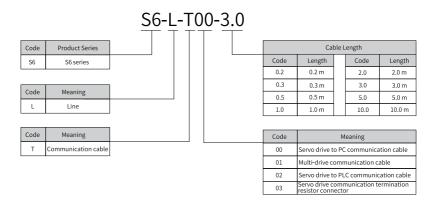



Figure 1-6 Model number of communication cables

## 1.4 Components

## 1.4.1 Servo Drives in Size A (Rated Power: 200 W to 400 W)

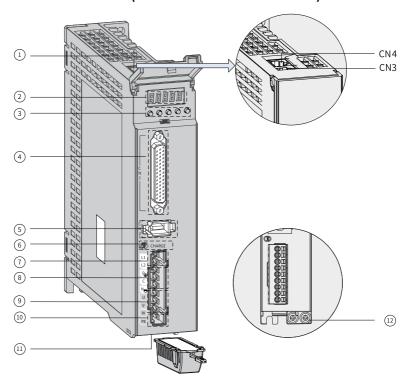



Figure 1-7 Components of servo drives in size A (SV660PS1R6I, SV660PS2R8I)

Table 1–1 Description of components (SV660PS1R6I, SV660PS2R8I)

| No. | Name                                     | Description                                                          |
|-----|------------------------------------------|----------------------------------------------------------------------|
| 1   | CN3, CN4<br>(communication<br>terminals) | Connected to RS232 and RS485 host controllers in parallel.           |
| 2   | 5-digit LED display                      | Used to display the servo drive operating status and set parameters. |

| No. | Name                                                                  | Description                                                                                                                                                                                                                                                                                                                                                           |
|-----|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | Keys                                                                  | MODE: Used to switch parameters in sequence.  △: Used to increase the value of the blinking bit.  ▽: Used to decrease the value of the blinking bit.  ⊲: Used to shift the blinking bit leftwards.  (Hold down: Turning to the next page when the displayed number exceeds five digits)  SET: Used to save modifications and enter the next menu.                     |
| 4   | CN1 (control terminal)                                                | Used by reference input signals and other I/O signals.                                                                                                                                                                                                                                                                                                                |
| 5   | CN2 (terminal for connecting the encoder)                             | Connected to the motor encoder terminal.                                                                                                                                                                                                                                                                                                                              |
| 6   | CHARGE (bus voltage indicator)                                        | Used to indicate the electric charge is present in the bus capacitor. When this indicator lights up, it indicates the electric charge may be still present in the internal capacitor of the servo drive even though the main circuit power supply is switched off.  To prevent electric shock, do not touch the power supply terminals when this indicator lights up. |
| 7   | L1, L2 (power input terminals)                                        | See the nameplate for the rated voltage class.                                                                                                                                                                                                                                                                                                                        |
| 7   | P⊕, NΘ (DC bus<br>terminals)                                          | Used by the common DC bus for multiple servo drives.                                                                                                                                                                                                                                                                                                                  |
| 8   | P⊕, C (terminals for<br>connecting external<br>regenerative resistor) | If an external regenerative resistor is needed, connect it between terminals P⊕ and C.                                                                                                                                                                                                                                                                                |
| 9   | U, V, W (terminals for connecting the servo motor)                    | Connected to U, V, and W phases of the servo motor.                                                                                                                                                                                                                                                                                                                   |
| 10  | Motor grounding terminal                                              | Connected to the grounding terminal of the motor for grounding purpose.                                                                                                                                                                                                                                                                                               |
| 11  | Battery location                                                      | Used to hold the battery box of the absolute encoder.                                                                                                                                                                                                                                                                                                                 |
| 12  | Servo drive grounding terminal                                        | Connected to the grounding terminal of the power supply for grounding purpose.                                                                                                                                                                                                                                                                                        |

## Note

The built-in regenerative resistor or jumper bar is not available in models S1R6 and S2R8. If an external regenerative resistor is needed for these models, connect it between terminals  $P\oplus$  and C.

## 1.4.2 Servo Drives in Size B (Rated Power: 750 W)

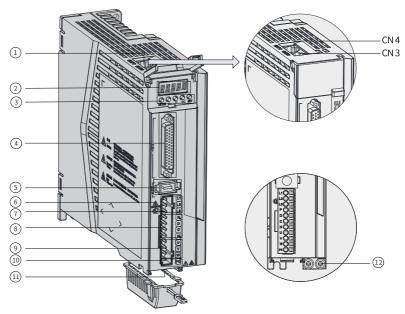



Figure 1-8 Description of servo drive components (SV660PS5R5I)

Table 1–2 Description of servo drive components (SV660PS5R5I)

| No. | Name                                      | Description                                                                                                                                                                                                                                                                                                                                       |
|-----|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | CN3, CN4<br>(communication<br>terminals)  | Connected to RS232 and RS485 host controllers in parallel.                                                                                                                                                                                                                                                                                        |
| 2   | 5-digit LED display                       | Used to display the servo drive operating status and set parameters.                                                                                                                                                                                                                                                                              |
| 3   | Keys                                      | MODE: Used to switch parameters in sequence.  △: Used to increase the value of the blinking bit.  ▽: Used to decrease the value of the blinking bit.  ⊲: Used to shift the blinking bit leftwards.  (Hold down: Turning to the next page when the displayed number exceeds five digits)  SET: Used to save modifications and enter the next menu. |
| 4   | CN1 (control terminal)                    | Used by reference input signals and other I/O signals.                                                                                                                                                                                                                                                                                            |
| 5   | CN2 (terminal for connecting the encoder) | Connected to the motor encoder terminal.                                                                                                                                                                                                                                                                                                          |

| No. | Name                                                                           | Description                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6   | CHARGE (bus<br>voltage indicator)                                              | Used to indicate the electric charge is present in the bus capacitor. When this indicator lights up, it indicates the electric charge may be still present in the internal capacitor of the servo drive even though the main circuit power supply is switched off.  To prevent electric shock, do not touch the power supply terminals when this indicator lights up. |
| 7   | L1, L2, L3 (power input terminals)                                             | See the nameplate for the rated voltage class.<br>Note: S5R5 (750 W) models support single-phase 220 V input<br>only, with a 220 V power supply connected between<br>terminals L1 and L2.                                                                                                                                                                             |
|     | P⊕, NΘ (DC bus<br>terminals)                                                   | Used by the common DC bus for multiple servo drives.                                                                                                                                                                                                                                                                                                                  |
| 8   | P⊕, D, C (terminals<br>for connecting<br>external<br>regenerative<br>resistor) | Remove the jumper bar between terminals P⊕ and D before connecting an external regenerative resistor between terminals P⊕ and C.                                                                                                                                                                                                                                      |
| 9   | U, V, W (terminals<br>for connecting the<br>servo motor)                       | Connected to U, V, and W phases of the servo motor.                                                                                                                                                                                                                                                                                                                   |
| 10  | Motor grounding terminal                                                       | Connected to the grounding terminal of the motor for grounding purpose.                                                                                                                                                                                                                                                                                               |
| 11  | Battery location                                                               | Used to hold the battery box of the absolute encoder.                                                                                                                                                                                                                                                                                                                 |
| 12  | Servo drive grounding terminal                                                 | Connected to the grounding terminal of the power supply for grounding purpose.                                                                                                                                                                                                                                                                                        |

## 1.4.3 Servo Drives in Size C and Size D (Rated Power: 1.0 kW to 3.0 kW)

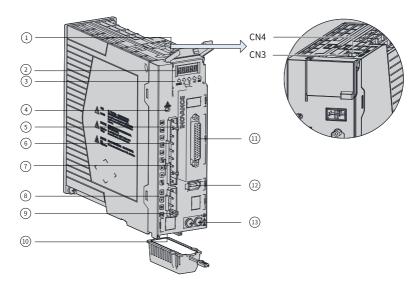



Figure 1-9 Components of servo drives in size C and size D (size C: SV660PS7R6I; size D: SV660PS012I)

Table 1–3 Description of components (Size C: SV660PS7R6I; size D: SV660PS012I)

| No. | Name                                     | Description                                                                                                                                                                                                                                                                                                                                                           |
|-----|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | CN3, CN4<br>(communication<br>terminals) | Connected to RS232 and RS485 host controllers in parallel.                                                                                                                                                                                                                                                                                                            |
| 2   | 5-digit LED display                      | Used to display the servo drive operating status and set parameters.                                                                                                                                                                                                                                                                                                  |
| 3   | Keys                                     | MODE: Used to switch parameters in sequence.  △: Used to increase the value of the blinking bit.  ▽: Used to decrease the value of the blinking bit.  ⊲: Used to shift the blinking bit leftwards.  (Hold down: Turning to the next page when the displayed number exceeds five digits)  SET: Used to save modifications and enter the next menu.                     |
| 4   | CHARGE (bus<br>voltage indicator)        | Used to indicate the electric charge is present in the bus capacitor. When this indicator lights up, it indicates the electric charge may be still present in the internal capacitor of the servo drive even though the main circuit power supply is switched off.  To prevent electric shock, do not touch the power supply terminals when this indicator lights up. |

| No. | Name                                                                           | Description                                                                                                                      |
|-----|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 5   | L1C, L2C (control circuit power input terminals)                               | See the nameplate for the rated voltage class.                                                                                   |
| 6   | L1, L2, L3 (main<br>circuit power input<br>terminals)                          | Used as the power input terminals for a three-phase 220 V servo drive. See the nameplate for the rated voltage class.            |
| 7   | P⊕, D, C (terminals<br>for connecting<br>external<br>regenerative<br>resistor) | Remove the jumper bar between terminals P⊕ and D before connecting an external regenerative resistor between terminals P⊕ and C. |
|     | sP⊕, NΘ (DC bus<br>terminals)                                                  | Used by the common DC bus for multiple servo drives.                                                                             |
| 8   | U, V, W (terminals<br>for connecting the<br>servo motor)                       | Connected to U, V, and W phases of the servo motor.                                                                              |
| 9   | Motor grounding terminal                                                       | Connected to the grounding terminal of the motor for grounding purpose.                                                          |
| 10  | Battery location                                                               | Used to hold the battery box of the absolute encoder.                                                                            |
| 11  | CN1 (control terminal)                                                         | Used by reference input signals and other I/O signals.                                                                           |
| 12  | CN2 (terminal for connecting the encoder)                                      | Connected to the motor encoder terminal.                                                                                         |
| 13  | Servo drive grounding terminals                                                | Connected to the grounding terminal of the power supply for grounding purpose.                                                   |

## Note

The main circuits of models S7R6 and S012 can be connected to a single-phase or a three-phase power supply, depending on which one is available on site. No derating is required when a single-phase power supply is used for models S7R6 and S012. The 220 V power supply can be connected between any two phases among L1, L2, and L3.

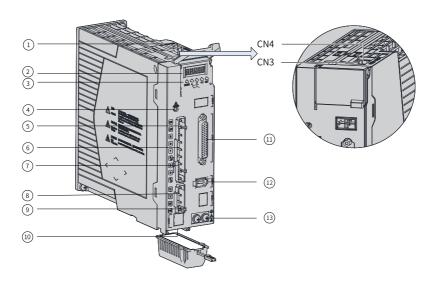



Figure 1-10 Components of servo drives in size C and size D (size C: SV660PT3R5I and SV660PT5R4I; size D: SV660PT8R4I and SV660PT012I)

Table 1–4 Description of components (Size C: SV660PT3R5I and SV660PT5R4I; size D: SV660PT8R4I and SV660PT012I)

| No. | Name                                     | Description                                                                                                                                                                                                                                                                                                                                                           |
|-----|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | CN3, CN4<br>(communication<br>terminals) | Connected to RS232 and RS485 communication command devices in parallel.                                                                                                                                                                                                                                                                                               |
| 2   | 5-digit LED display                      | Used to display the servo drive operating status and set parameters.                                                                                                                                                                                                                                                                                                  |
| 3   | Keys                                     | MODE: Used to switch parameters in sequence.  △: Used to increase the value of the blinking bit.  ▽: Used to decrease the value of the blinking bit.  ⊲: Used to shift the blinking bit leftwards.  (Hold down: Turning to the next page when the displayed number exceeds five digits)  SET: Used to save modifications and enter the next menu.                     |
| 4   | CHARGE (bus<br>voltage indicator)        | Used to indicate the electric charge is present in the bus capacitor. When this indicator lights up, it indicates the electric charge may be still present in the internal capacitor of the servo drive even though the main circuit power supply is switched off.  To prevent electric shock, do not touch the power supply terminals when this indicator lights up. |

| No. | Name                                                                           | Description                                                                                                                      |
|-----|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 5   | L1C, L2C (control circuit power input terminals)                               | See the nameplate for the rated voltage class.                                                                                   |
| 6   | R, S, T (main circuit<br>power input<br>terminals)                             | Used as the power input terminals for a three-phase 380 V servo drive. See the nameplate for the rated voltage class.            |
| 7   | P⊕, D, C (terminals<br>for connecting<br>external<br>regenerative<br>resistor) | Remove the jumper bar between terminals P⊕ and D before connecting an external regenerative resistor between terminals P⊕ and C. |
|     | P⊕, NΘ (DC bus<br>terminals)                                                   | Used by the common DC bus for multiple servo drives.                                                                             |
| 8   | U, V, W (terminals<br>for connecting the<br>servo motor)                       | Connected to U, V, and W phases of the servo motor.                                                                              |
| 9   | Motor grounding terminal                                                       | Connected to the grounding terminal of the motor for grounding purpose.                                                          |
| 10  | Battery location                                                               | Used to hold the battery box of the absolute encoder.                                                                            |
| 11  | CN1 (control terminal)                                                         | Used by reference input signals and other I/O signals.                                                                           |
| 12  | CN2 (terminal for connecting the encoder)                                      | Connected to the motor encoder terminal.                                                                                         |
| 13  | Servo drive grounding terminal                                                 | Connected to the grounding terminal of the power supply for grounding purpose.                                                   |

## 1.4.4 Servo Drives in Size E (Rated Power: 5.0 kW to 7.5 kW)

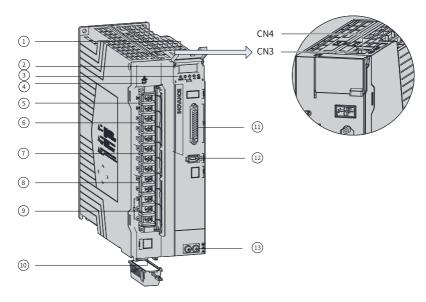



Figure 1-11 Components of servo drives in size E (SV660PT017I, SV660PT021I, SV660PT026I)

Table 1–5 Description of components (SV660PT017I, SV660PT021I, SV660PT026I)

| No. | Name                                     | Description                                                                                                                                                                                                                                                                                                                                                           |
|-----|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | CN3, CN4<br>(communication<br>terminals) | Connected to RS232 and RS485 host controllers in parallel.                                                                                                                                                                                                                                                                                                            |
| 2   | 5-digit LED display                      | Used to display the servo drive operating status and set parameters.                                                                                                                                                                                                                                                                                                  |
| 3   | Keys                                     | MODE: Used to switch parameters in sequence.  △: Used to increase the value of the blinking bit.  ▽: Used to decrease the value of the blinking bit.  ⊲: Used to shift the blinking bit leftwards.  (Hold down: Turning to the next page when the displayed number exceeds five digits)  SET: Used to save modifications and enter the next menu.                     |
| 4   | CHARGE (bus voltage indicator)           | Used to indicate the electric charge is present in the bus capacitor. When this indicator lights up, it indicates the electric charge may be still present in the internal capacitor of the servo drive even though the main circuit power supply is switched off.  To prevent electric shock, do not touch the power supply terminals when this indicator lights up. |

| No. | Name                                                                     | Description                                                                                                                                                                                                 |
|-----|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5   | L1C, L2C (control circuit power input terminals)                         | See the nameplate for the rated voltage class.                                                                                                                                                              |
| 6   | R, S, T (main circuit power input terminals)                             | Used as the power input terminals for a three-phase 380 V servo drive. See the nameplate for the rated voltage class.                                                                                       |
| 7   | U, V, W (terminals for connecting the servo motor)                       | Connected to U, V, and W phases of the servo motor.                                                                                                                                                         |
| 8   | N2, N1 (terminals for connecting external reactor)                       | Terminals N1 and N2 are jumpered by default. To suppress harmonics in the power supply, remove the jumper between terminals N1 and N2 first and connect an external DC reactor between terminals N1 and N2. |
| 9   | P⊕, D, C (terminals for<br>connecting external<br>regenerative resistor) | Remove the jumper bar between terminals P⊕ and D before connecting an external regenerative resistor between terminals P⊕ and C.                                                                            |
| 10  | Battery location                                                         | Used to hold the battery box of the absolute encoder.                                                                                                                                                       |
| 11  | CN1 (control terminal)                                                   | Used by reference input signals and other I/O signals.                                                                                                                                                      |
| 12  | CN2 (terminal for connecting the encoder)                                | Connected to the motor encoder terminal.                                                                                                                                                                    |
| 13  | PE terminal                                                              | Connected to the grounding terminals of the power supply and the motor for grounding purpose.                                                                                                               |

## 1.4.5 Servo Motors in Flange Sizes 40/60/80

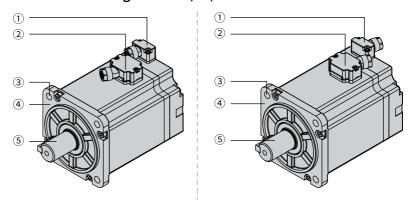



Figure 1-12 Components of terminal-type motors (Left: motor with front cable outlet; Right: motor with rear cable outlet)

Table 1–6 Components of terminal-type motors

| No. | Name                        |
|-----|-----------------------------|
| 1   | Encoder socket              |
| 2   | Power socket                |
| 3   | Mounting flange face        |
| 4   | Mounting screw through-hole |
| 5   | Shaft extension (with key)  |

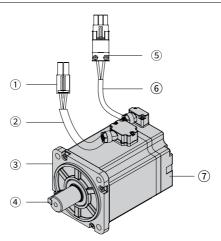



Figure 1-13 Components of lead wire-type motors

Table 1–7 Components of lead wire-type motors

| No. | Name                     |
|-----|--------------------------|
| 1   | Power cable connector    |
| 2   | Power cable              |
| 3   | Mounting flange face     |
| 4   | Output shaft             |
| 5   | Encoder connector        |
| 6   | Encoder cable            |
| 7   | Encoder (detection part) |

## 1.4.6 Servo Motors in Flange Sizes 100/130/180

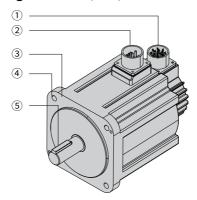



Figure 1-14 Components of servo drives in flange sizes 100/130/180

Table 1–8 Components of servo drives in flange sizes 100/130/180

| No. | Name                        |
|-----|-----------------------------|
| 1   | Encoder connector           |
| 2   | Power cable connector       |
| 3   | Mounting flange face        |
| 4   | Mounting screw through-hole |
| 5   | Shaft extension (with key)  |

### 2 Installation

Read through the safety instructions in Chapter "Fundamental Safety Instructions". Failure to comply may result in serious consequences.



- Observe the installation direction described in this chapter. Failure to comply may result in equipment fault or damage.
- Do not install or operate damaged or defective equipment. Failure to comply will result in personal injury.
- Do not install the equipment in environments exposed to water splashes or corrosive gases. Failure to comply will result in equipment fault.
- Do not install the equipment near inflammable gases or combustible objects. Failure to comply will result in a fire or electric shock.
- Install the equipment inside a fire-proof cabinet that provides electrical protection. Failure to comply may result in a fire.
- Ensure the specified clearance is reserved among the servo drive, the interior surface of the control cabinet, and other machines. Failure to comply will result in a fire or equipment fault.
- Do not put heavy objects on the equipment. Failure to comply may result in personal injury or equipment damage.
- Do not impose large impact on the equipment. Failure to comply may result in equipment damage.
- Do not block the air inlet/outlet of the equipment or allow unwanted objects to fall into the equipment. Failure to comply may result in a fire or equipment fault.

## 2.1 Installing the Servo Drive

## 2.1.1 Unpacking Inspection

Check the following items upon unpacking.

| Items                                                              | Description                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check whether the delivered product is consistent with your order. | Check whether the servo drive model and specifications comply with your order.  See the dimensions of the packing box in "Table 2-1" on page 28. The deliverables include the product, cushion, carton box, and screw bag, as shown in "Figure 2-1" on page 28. |
| Check whether the product is intact.                               | Check whether the product delivered is in good condition. If there is any part missing or damaged, contact Inovance or your supplier immediately.                                                                                                               |

Table 2–1 Dimensions of the outer packing box

| Specifications                                 | Outer Width<br>(mm) | Outer Height<br>(mm) | Outer Depth<br>(mm) |
|------------------------------------------------|---------------------|----------------------|---------------------|
| Size A<br>(SV660PS1R6I, SV660PS2R8I)           | 250.0               | 90.0                 | 195                 |
| Size B<br>(SV660PS5R5I)                        | 225.0               | 90                   | 205.0               |
| Size C<br>(SV660PS7R6I, SV660PT3R5I,<br>T5R4I) | 235.0               | 105.0                | 215.0               |
| Size D<br>(SV660PS012I, SV660PT8R4I, T012I)    | 235.0               | 130.0                | 225.0               |
| Size E<br>(SV660PT017I, SV660PT021I, T026I)    | 320.0               | 150.0                | 280.0               |

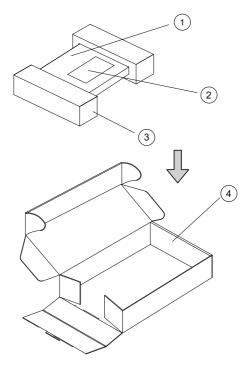



Figure 2-1 Contents inside the packing box

| No. | Name                                               |  |
|-----|----------------------------------------------------|--|
| 1   | Product                                            |  |
| 2   | Terminal accessories (varying with product models) |  |

| No. | Name       |
|-----|------------|
| 3   | Cushion    |
| 4   | Carton box |

## 2.1.2 Installation Environment

Table 2–2 Environment requirement

| Item                  | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation location | Indoors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grid<br>overvoltage   | Overvoltage Category III (OVC III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Altitude              | The maximum altitude is 5000 m. • For altitudes not higher than 1000 m, derating is not required. • For altitudes above 1000 m, derate 1% for every additional 100 m. • For altitudes above 2000 m, contact Inovance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Temperature           | <ul> <li>Mounting/Operating temperature: 0°C to 55°C         For temperatures between 0°C to 45°C, derating is not required. For temperatures above 45°C, derate 2% for every additional 1°C.</li> <li>Storage/Transportation temperature: -40°C to +70°C</li> <li>To improve the reliability of the machine, use the servo drive in environments without dramatic temperature change.</li> <li>When installing the servo drive into an enclosed environment such as a control cabinet, use a cooling fan or air conditioner to keep the temperature of the inlet air below 45°C. Failure to comply will result in over-temperature or a fire.</li> <li>Install the servo drive on the surface of an incombustible object and leave sufficient surrounding space for heat dissipation.</li> <li>Take measures to prevent the servo drive from being frozen.</li> </ul> |
| Ambient<br>humidity   | Below 90% RH (without condensation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Storage<br>humidity   | Below 90%RH (without condensation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vibration             | Below 4.9 m/s <sup>2</sup> • During transportation with packing box: compliant with EN 60721-3-2 Class 2M3 • During installation without packing box: compliant with ISTA 1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Impact                | Below 19.6 m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Item        | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IP rating   | IP20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Environment | Pollution Degree 2 and below Install the servo drive in a place that meets the following requirements: • Free from direct sunlight, dust, corrosive gas, explosive and inflammable gas, oil mist, vapor, water drop, and salty element • Insusceptible to vibration (away from equipment that may generate strong vibration, such as a punch press) • Without the risk of intrusion of unwanted objects into the servo drive, such as metal powder, oil, and water • Free from radioactive substances, combustible materials, harmful gases and liquids, and salt corrosion • Away from combustible materials such as wood |

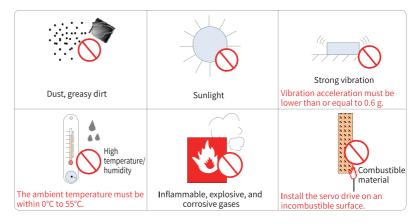



Figure 2-2 Environment requirements

## 2.1.3 Installation Clearance

Servo drives in different power ratings require different installation clearances. When installing multiple servo drives side by side, it is recommended to reserve a clearance of at least 10 mm (0.39 in.) between every two servo drives and a clearance of at least 50 mm (1.97 in.) above and below each servo drive for heat dissipation.

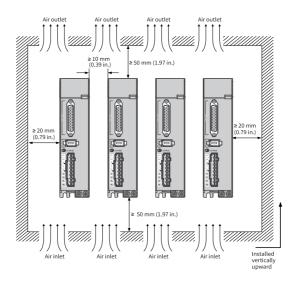



Figure 2-3 Clearance for side-by-side installation

Servo drives in size A and size B (rated power: 200 W to 750 W) support compact installation, in which a clearance of at least 1 mm (0.04 in.) must be reserved between every two servo drives. When adopting compact installation, derate the load rate to 75%.

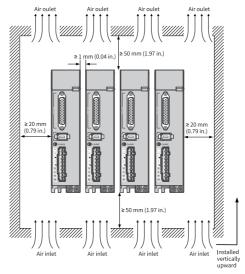



Figure 2-4 Clearance for compact installation

Servo drives in sizes C, D and E (rated power: 1.0 kW to 7.5 kW) support zero-clearance installation between every two servo drives, without the need for derating.

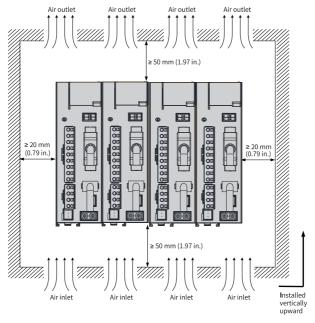



Figure 2-5 Zero-clearance installation

#### 2.1.4 Installation Dimensions

## Servo drives in size A (rated power: 200 W to 400 W): SV660PS1R6I, SV660PS2R8I

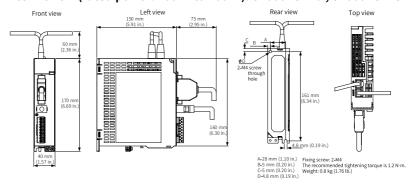



Figure 2-6 Dimension drawing of servo drives in size A

## Servo drives in size B (rated power: 750 W): SV660PS5R5I

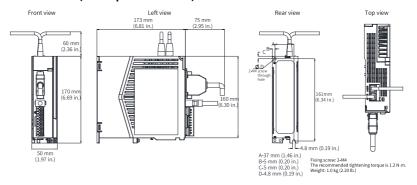



Figure 2-7 Dimension drawing of servo drives in size B

# Servo drives in size C (rated power: 1.0 kW to 1.5 kW): SV660PS7R6I, SV660PT3R5I, and SV660PT5R4I



Figure 2-8 Dimension drawing of servo drives in size C

## Servo drives in size D (rated power: 1.5 kW to 3.0 kW): SV660PS012I, SV660PT8R4I, and SV660PT012I

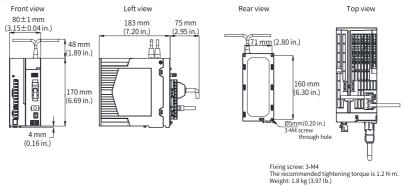



Figure 2-9 Dimension drawing of servo drives in size D

# Servo drives in size E (rated power: 5.0 kW to 7.5 kW): SV660PT017I, SV660PT021I, and SV660PT026I

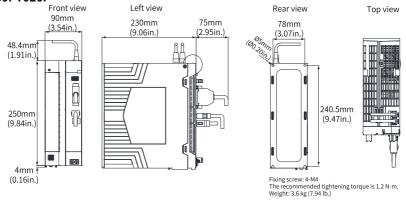



Figure 2-10 Dimension drawing of servo drives in size E

## 2.1.5 Installation Precautions

Table 2–3 Installation precautions

| Item                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation Method | <ul> <li>Install the servo drive vertically upward to facilitate heat dissipation. For installation of multiple servo drives inside the cabinet, install them side by side. For dual-row installation, install an air guide plate.</li> <li>Make sure the servo drive is installed vertically to the wall. Cool the servo drive down with natural convection or a cooling fan. Secure the servo drive to the mounting surface through two to four mounting holes (the number of mounting holes depends on the capacity of the servo drive).</li> <li>Install the servo drive vertically to the wall, with its front (actual mounting face) facing the operator.</li> <li>The mounting bracket (if needed) must be made of incombustible materials.</li> </ul> |
| Cooling             | As shown in "2.1.3 Installation Clearance" on page 30, leave sufficient space around the servo drive to allow proper heat dissipation through the cooling fan or natural convection. Take the heat dissipated by other devices inside the cabinet into consideration. Install a cooling fan to the upper part of the servo drive to avoid excessive temperature rise in a certain area, keeping an even temperature inside the control cabinet.                                                                                                                                                                                                                                                                                                               |
| Grounding           | Ground the grounding terminal properly. Failure to comply may result in an electric shock or malfunction due to interference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Item                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Routing                                                            | As shown in the figure below, route the servo drive cables downwards to prevent liquids from flowing into the servo drive along the cables.  Route the cable downwards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dust-proof cover<br>(included in the<br>standard<br>configuration) | Insert the dust-proof cover into the communication port (CN3/CN4) not in use. This is to prevent unwanted objects, such as solids or liquids, from falling into the servo drive and resulting in faults.  Each servo drive is delivered with two dust-proof covers. You can also place an order for more dust-proof covers as needed (model: NEX-02-N2B; manufacturer: PINGOOD).  Note:  • Dust-proof cover: Prevents unwanted objects, such as solids or liquids, from falling into the servo drive and leading to faults.  • Dust-proof covers are delivered along with the servo drive. Keep the dust-proof covers in a proper place. |

# 2.1.6 Installation Instructions

The servo drive supports backplate mounting only.

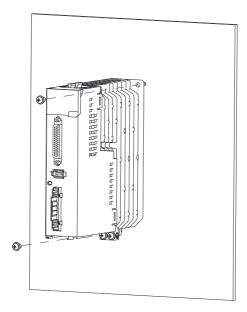



Figure 2-11 Backplate mounting

Servo drives in sizes A, B, and C are secured by two screws, with one screw on the top and the other one at the bottom. Servo drives in size D are secured by three screws, with two screws on the top and another one at the bottom. Servo drives in size E are secured by four screws, with two screws on the top and the other two at the bottom.

# 2.2 Installing the Servo Motor

# 2.2.1 Unpacking Inspection

Check the following items upon unpacking.

| Items                                                              | Description                                                                                                                                                                                |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check whether the delivered product is consistent with your order. | Check whether the motor model and specifications comply with your order.  Note: Check whether the packing box is intact. If the packing box is damaged, contact your supplier immediately. |
| Check whether the product is intact.                               | Check whether the product delivered is in good condition. If there is any part missing or damaged, contact Inovance or your supplier immediately.                                          |

# 2.2.2 Installation Environment

| Item                     | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Altitude                 | The maximum altitude is 5000 m.  Derating is not required for altitudes above 1000 m.  For altitudes above 1000 m, derate 1% for every additional 100 m.  For altitudes above 2000 m, contact Inovance.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ambient temperature      | 0°C to 40°C (non-freezing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Storage temperature      | -20°C to +60°C (Peak temperature: 80°C for 72 hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ambient<br>humidity      | 20%–80% RH (without condensation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Storage humidity         | 20%–90% RH (without condensation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vibration                | Below 49 m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Shock                    | Below 490 m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IP rating                | After wiring is done, the overall IP rating of the motor is as follows: IP67 (shaft opening excluded, with power cables and encoder connectors installed properly)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Installation<br>location | <ul> <li>Install the servo motor in a place free from corrosive and inflammable gases and combustible materials, such as the hydrogen sulfide, chlorine, ammonia, sulphur gas, chloridize gas, acid, soda and salt.</li> <li>Use the servo motor with oil seal when the motor is to be used in a place with grinding fluid, oil mist, iron powders or cuttings.</li> <li>Install the servo motor away from heating sources such as a heating stove.</li> <li>Do not use the servo motor in an enclosed environment. Running in an enclosed environment will lead to motor overtemperature, which shortens its service life.</li> </ul> |

## 2.2.3 Installation Dimensions

## **Dimension drawings of MS1H1 series motors**

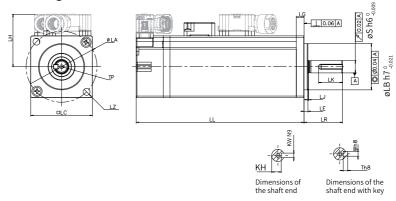



Figure 2-12 Dimension drawing of terminal-type motors

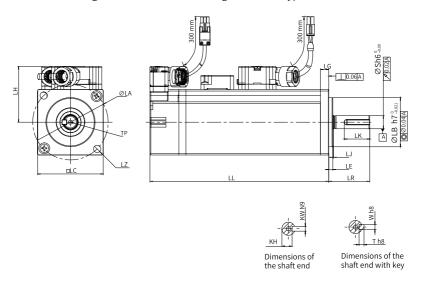



Figure 2-13 Dimension drawing of lead wire-type motors

| Motor Model    | LC     | LL     | LR          | LA     | LZ           | LH     | LG     | LE              | LJ              |
|----------------|--------|--------|-------------|--------|--------------|--------|--------|-----------------|-----------------|
| Motor Model    |        |        |             |        | Unit: mm (ir | ո.)    |        |                 |                 |
| MS1H1-05B30CB- |        | 65     |             |        |              |        |        |                 |                 |
| A330Z(-S)      | 40     | (2.56) | 25±0.5      | 46     | 2-ф4.5       | 34     | 5      | 2.5±0.5         | 0.5±0.35        |
| MS1H1-05B30CB- | (1.57) | 96.00  | (0.98±0.02) | (1.81) | (0.08-ф0.18) | (1.34) | (0.20) | (0.10±0.02)     | $(0.02\pm0.01)$ |
| A332Z(-S)      |        | (3.78) |             |        |              |        |        |                 |                 |
| MS1H1-10B30CB- |        | 77.5   |             |        |              |        |        |                 |                 |
| A330Z(-S)      | 40     | (3.05) | 25±0.5      | 46     | 2-ф4.5       | 34     | 5      | 2.5±0.5         | 0.5±0.35        |
| MS1H1-10B30CB- | (1.57) | 109    | (0.98±0.02) | (1.81) | (0.08-ф0.18) | (1.34) | (0.20) | (0.10±0.02)     | $(0.02\pm0.01)$ |
| A332Z(-S)      |        | (4.29) |             |        |              |        |        |                 |                 |
| MS1H1-20B30CB- |        | 72.5   |             |        |              |        |        |                 |                 |
| A331Z(-S)      | 60     | (2.85) | 30±0.5      | 70     | 4-φ5.5       | 44     | 7.5    | 3±0.5           | 0.5±0.35        |
| MS1H1-20B30CB- | (2.36) | 100    | (1.18±0.02) | (2.76) | (0.16-ф0.18) | (1.73) | (0.30) | (0.12±0.02)     | $(0.02\pm0.01)$ |
| A334Z(-S)      |        | (3.94) |             |        |              |        |        |                 |                 |
| MS1H1-40B30CB- |        | 91     |             |        |              |        |        |                 |                 |
| A331Z(-S)      | 60     | (3.58) | 30±0.5      | 70     | 4-φ5.5       | 44     | 7.5    | 3±0.5           | 0.5±0.35        |
| MS1H1-40B30CB- | (2.36) | 119    | (1.18±0.02) | (2.76) | (0.16-ф0.18) | (1.73) | (0.30) | (0.12±0.02)     | $(0.02\pm0.01)$ |
| A334Z(-S)      |        | (4.69) |             |        |              |        |        |                 |                 |
| MS1H1-55B30CB- | 80     | 96.2   | 35±0.5      | 90     | 4-ф7         | 54     | 7.7    | 3±0.5           | 0.5±0.35        |
| A331Z(-S)      | (3.15) | (3.79) | (1.38±0.02) | (3.54) | (0.16-ф0.28) | (2.13) | (0.30) | (0.12±0.02)     | $(0.02\pm0.01)$ |
| MS1H1-75B30CB- |        | 107    |             |        |              |        |        |                 |                 |
| A331Z(-S)      | 80     | (4.21) | 35±0.5      | 90     | 4-ф7         | 54     | 7.7    | 3±0.5           | 0.5±0.35        |
| MS1H1-75B30CB- | (3.15) | 140    | (1.38±0.02) | (3.54) | (0.16-ф0.28) | (2.13) | (0.30) | (0.12±0.02)     | $(0.02\pm0.01)$ |
| A334Z(-S)      |        | (5.51) |             |        |              |        |        |                 |                 |
| MS1H1-10C30CB- | 80     | 118.2  | 35±0.5      | 90     | 4-ф7         | 54     | 7.7    | 3±0.5           | 0.5±0.35        |
| A331Z(-S)      | (3.15) | (4.65) | (1.38±0.02) | (3.54) | (0.16-ф0.28) | (2.13) | (0.30) | $(0.12\pm0.02)$ | $(0.02\pm0.01)$ |

| Motor Model    | S      | LB     | TP        | LK                 | KH     | KW     | W      | T      | Weight   |
|----------------|--------|--------|-----------|--------------------|--------|--------|--------|--------|----------|
|                |        |        | H         | nit: mm (in.)      |        |        |        |        | Unit: kg |
|                |        |        | UI        | 111. 111111 (111.) |        |        |        |        | (lb.)    |
| MS1H1-05B30CB- |        |        |           |                    |        |        |        |        | 0.39     |
| A330Z(-S)      | 8      | 30     | M3x6      | 15.5               | 6.2    | 3      | 3      | 3      | (0.86)   |
| MS1H1-05B30CB- | (0.31) | (1.18) | (M3x0.24) | (0.61)             | (0.24) | (0.12) | (0.12) | (0.12) | 0.5      |
| A332Z(-S)      |        |        |           |                    |        |        |        |        | (1.10)   |
| MS1H1-10B30CB- |        |        |           |                    |        |        |        |        | 0.45     |
| A330Z(-S)      | 8      | 30     | M3x6      | 15.5               | 6.2    | 3      | 3.00   | 3      | (0.99)   |
| MS1H1-10B30CB- | (0.31) | (1.18) | (M3x0.24) | (0.61)             | (0.24) | (0.12) | (0.12) | (0.12) | 0.64     |
| A332Z(-S)      |        |        |           |                    |        |        |        |        | (1.41)   |
| MS1H1-20B30CB- |        |        |           |                    |        |        |        |        | 0.78     |
| A331Z(-S)      | 14     | 50     | M5x8      | 16.5               | 11     | 5      | 5      | 5      | (1.72)   |
| MS1H1-20B30CB- | (0.55) | (1.97) | (M3x0.31) | (0.65)             | (0.43) | (0.20) | (0.20) | (0.20) | 1.16     |
| A334Z(-S)      |        |        |           |                    |        |        |        |        | (2.56)   |
| MS1H1-40B30CB- |        |        |           |                    |        |        |        |        | 1.11     |
| A331Z(-S)      | 14     | 50     | M5x8      | 16.5               | 11     | 5      | 5      | 5      | (2.45)   |
| MS1H1-40B30CB- | (0.55) | (1.97) | (M3x0.31) | (0.65)             | (0.43) | (0.20) | (0.20) | (0.20) | 1.48     |
| A334Z(-S)      |        |        |           |                    |        |        |        |        | (3.26)   |
| MS1H1-55B30CB- | 19     | 70     | M6x20     | 25                 | 15.5   | 6      | 6      | 6      | 1.85     |
| A331Z(-S)      | (0.75) | (2.76) | (M3x0.79) | (0.98)             | (0.61) | (0.24) | (0.24) | (0.24) | (4.08)   |
| MS1H1-75B30CB- |        |        |           |                    |        |        |        |        | 2.18     |
| A331Z(-S)      | 19     | 70     | M6x20     | 25                 | 15.5   | 6      | 6      | 6      | (4.81)   |
| MS1H1-75B30CB- | (0.75) | (2.76) | (M3x0.79) | (0.98)             | (0.61) | (0.24) | (0.24) | (0.24) | 2.82     |
| A334Z(-S)      |        |        |           |                    |        |        |        |        | (6.22)   |
| MS1H1-10C30CB- | 19     | 70     | M6x20     | 25                 | 15.5   | 6      | 6      | 6      | 2.55     |
| A331Z(-S)      | (0.75) | (2.76) | (M3x0.79) | (0.98)             | (0.61) | (0.24) | (0.24) | (0.24) | (5.62)   |

- Values inside the parentheses "()" are in British units.
- The tightening tension for terminal screws must be between 0.19 N·m to 0.21 N·m, exceeding of which may damage the terminal.
- For dimension drawings of motor models ending with "-S", contact Inovance technical support.

#### **Dimension drawings of MS1H2 series motors**



Figure 2-14 Dimension drawing of MS1H2 series motors

| Motor                                                            | LC            | LL                              | LR                      | LA            | LZ                       | KA1          | KB1                              | KA2          | KB2                                 | LG           | LE                       | LJ                      | LB           |
|------------------------------------------------------------------|---------------|---------------------------------|-------------------------|---------------|--------------------------|--------------|----------------------------------|--------------|-------------------------------------|--------------|--------------------------|-------------------------|--------------|
| Model                                                            |               |                                 |                         |               |                          | U            | nit: mm (                        | in.)         |                                     |              |                          |                         |              |
| MS1H2-<br>10C30CB(<br>D)-A331Z                                   | 100           | 164<br>(6.46)                   | 45±1                    | 115           | 4-φ7                     | 88           | 94.5<br>(3.72)                   | 74           | 143.5<br>(5.65)                     | 10           | 5±0.3<br>(0.20±          | 2.5±0.75                | 95           |
| MS1H2-<br>10C30CB(<br>D)-A334Z                                   | (3.94)        | 213.5<br>(8.41)                 | (1.77±0<br>.04)         | (4.53)        | (0.16-<br>φ0.28)         | (3.46)       | 101<br>(3.98)                    | (2.91)       | 192.5<br>(5.65)                     | (0.39)       | 0.01)                    | (0.10±0.03)             | (3.74)       |
| MS1H2-<br>15C30CB(<br>D)-A331Z<br>MS1H2-<br>15C30CB(<br>D)-A334Z | 100<br>(3.94) | 189<br>(7.44)<br>239<br>(9.41)  | 45±1<br>(1.77±0<br>.04) | 115<br>(4.53) | 4-φ7<br>(0.16-<br>φ0.28) | 88<br>(3.46) | 119.5<br>(4.70)<br>128<br>(5.04) | 74<br>(2.91) | 168.5<br>(6.63)<br>219.50<br>(8.64) | 10<br>(0.39) | 5±0.3<br>(0.20±<br>0.01) | 2.5±0.75<br>(0.10±0.03) | 95<br>(3.74) |
| MS1H2-<br>20C30CD-<br>A331Z<br>MS1H2-<br>20C30CD-<br>A334Z(-S4)  | 100<br>(3.94) | 214<br>(8.43)<br>265<br>(10.43) | 45±1<br>(1.77±0<br>.04) | 115<br>(4.53) | 4-φ7<br>(0.16-<br>φ0.28) | 88<br>(3.46) | 144.5<br>(5.69)<br>153<br>(6.02) | 74<br>(2.91) | 193.5<br>(7.62)<br>244<br>(9.61)    | 10<br>(0.39) | 5±0.3<br>(0.20±<br>0.01) | 2.5±0.75<br>(0.10±0.03) | 95<br>(3.74) |

| Motor                            | LC     | LL               | LR              | LA     | LZ               | KA1    | KB1             | KA2    | KB2              | LG     | LE              | LJ          | LB     |
|----------------------------------|--------|------------------|-----------------|--------|------------------|--------|-----------------|--------|------------------|--------|-----------------|-------------|--------|
| Model                            |        |                  |                 |        |                  | Ur     | nit: mm (       | in.)   |                  |        |                 |             |        |
| MS1H2-<br>25C30CD-<br>A331Z      | 100    | 240.5<br>(9.47)  | 45±1<br>(1.77±0 | 115    | 4-φ7<br>(0.16-   | 88     | 169.5<br>(6.67) | 74     | 218.5<br>(8.60)  | 10     | 5±0.3<br>(0.20± | 2.5±0.75    | 95     |
| MS1H2-<br>25C30CD-<br>A334Z(-S4) | (3.94) | 290<br>(11.42)   | .04)            | (4.53) | ф0.28)           | (3.46) | 178<br>(7.01)   | (2.91) | 269<br>(10.59)   | (0.39) | 0.01)           | (0.10±0.03) | (3.74) |
| MS1H2-<br>30C30CD-<br>A331Z      | 130    | 209.5<br>(8.25)  | 63±1            | 145    | 4-φ9<br>(0.16-   | 103    | 136<br>(5.35)   | 74     | 188.5<br>(7.42)  | 14     | 6±0.3<br>(0.24± | 0.5±0.75    | 110    |
| MS1H2-<br>30C30CD-<br>A334Z(-S4) | (5.12) | 265.5<br>(10.45) | (2.48±0<br>.04) | (5.71) | ф0.35)           | (4.06) | 139<br>(5.47)   | (2.91) | 244.5<br>(9.63)  | (0.55) | 0.01)           | (0.10±0.03) | (4.33) |
| MS1H2-<br>40C30CD-<br>A331Z      | 130.00 | 252<br>(9.92)    | 63±1<br>(2.48±0 | 145.00 | 4-φ9             | 103    | 178.5<br>(7.03) | 74     | 231<br>(9.09)    | 14     | 6±0.3<br>(0.24± | 0.5±0.75    | 110    |
| MS1H2-<br>40C30CD-<br>A334Z(-S4) | (5.12) | 308<br>(12.13)   | .04)            | (5.71) | (0.16-<br>ф0.35) | (4.06) | 181.5<br>(7.15) | (2.91) | 287<br>(11.30)   | (0.55) | 0.01)           | (0.10±0.03) | (4.33) |
| MS1H2-<br>50C30CD-<br>A331Z      | 130    | 294.5<br>(11.59) | 63±1<br>(2.48±0 | 145    | 4-φ9<br>(0.16-   | 103    | 221<br>(8.70)   | 74     | 273.5<br>(10.77) | 14.00  | 6±0.3<br>(0.24± | 0.5±0.75    | 110    |
| MS1H2-<br>50C30CD-<br>A334Z(-S4) | (5.12) | 350.5<br>(13.80) | .04)            | (5.71) | ф0.35)           | (4.06) | 224<br>(8.82)   | (2.91) | 329.5<br>(12.97) | (0.55) | 0.01)           | (0.10±0.03) | (4.33) |

| Motor<br>Model                   | S      | TP        | LK      | KH                                    | KW     | W      | Т      | Weight           |                     | Power<br>Side                        |                           |
|----------------------------------|--------|-----------|---------|---------------------------------------|--------|--------|--------|------------------|---------------------|--------------------------------------|---------------------------|
|                                  |        |           | Unit: m | nm (in.)                              |        |        |        | Unit: kg (lb.)   | Connec<br>tor Model | (Power<br>Brake<br>Side<br>Included) | Encoder<br>Side           |
| MS1H2-<br>10C30CB(<br>D)-A331Z   | 24     | M8x16     | 36      | 20 <sup>0</sup> -0.2                  | 8      | 8      | 7      | 5.11<br>(11.27)  |                     |                                      |                           |
| MS1H2-<br>10C30CB(<br>D)-A334Z   | (0.94) | (M8x0.63) | (1.42)  | (0.78 <sup>0</sup> -0.01)             | (0.31) | (0.31) | (0.28) | 6.41<br>(14.13)  |                     |                                      |                           |
| MS1H2-<br>15C30CB(<br>D)-A331Z   | 24     | M8x16     | 36      | 20 <sup>0</sup> -0.2                  | 8      | 8      | 7      | 6.22<br>(13.71)  |                     |                                      |                           |
| MS1H2-<br>15C30CB(<br>D)-A334Z   | (0.94) | (M8x0.63) | (1.42)  | (0.78 <sup>0</sup> -0.01)             | (0.31) | (0.31) | (0.28) | 7.52<br>(16.58)  | Aviation            | MI-DTL-<br>5015<br>series            | MI-DTL-<br>5015<br>series |
| MS1H2-<br>20C30CD-<br>A331Z      | 24     | M8x16     | 36      | 20 <sup>0</sup> -0.2                  | 8      | 8      | 7      | 7.39<br>(16.29)  | tor                 | 3102E20-<br>18P                      | 3102E20-<br>29P           |
| MS1H2-<br>20C30CD-<br>A334Z(-S4) | (0.94) | (M8x0.63) | (1.42)  | (0.78 <sup>0</sup> <sub>-0.01</sub> ) | (0.31) | (0.31) | (0.28) | 8.7<br>(19.18)   |                     |                                      |                           |
| MS1H2-<br>25C30CD-<br>A331Z      | 24     | M8x16     | 36      | 20 <sup>0</sup> -0.2                  | 8      | 8      | 7      | 8.55<br>(18.85)  |                     |                                      |                           |
| MS1H2-<br>25C30CD-<br>A334Z(-S4) | (0.94) | (M8x0.63) | (1.42)  | (0.78 <sup>0</sup> -0.01)             | (0.31) | (0.31) | (0.28) | 9.80<br>(21.61)  |                     |                                      |                           |
| MS1H2-<br>30C30CD-<br>A331Z      | 28     | M8x20     | 54      | 24 <sup>0</sup> -0.2                  | 8      | 8      | 7      | 10.73<br>(23.66) |                     |                                      |                           |
| MS1H2-<br>30C30CD-<br>A334Z(-S4) | (1.10) | (M8x0.79) | (2.13)  | (0.94 <sup>0</sup> -0.01)             | (0.31) | (0.31) | (0.28) | 13.2<br>(29.10)  |                     |                                      |                           |
| MS1H2-<br>40C30CD-<br>A331Z      | 28     | M8x20     | 54      | 24 <sup>0</sup> -0.2                  | 8      | 8      | 7      | 15.43<br>(34.02) | Aviation            | MI-DTL-<br>5015<br>series            | MI-DTL-<br>5015<br>series |
| MS1H2-<br>40C30CD-<br>A334Z(-S4) | (1.10) | (M8x0.79) | (2.13)  | (0.94 <sup>0</sup> -0.01)             | (0.31) | (0.31) | (0.28) | 17.9<br>(39.46)  | tor                 | 3102E20-<br>18P                      | 3102E20-<br>29P           |
| MS1H2-<br>50C30CD-<br>A331Z      | 28     | M8x20     | 54      | 24 <sup>0</sup> -0.2                  | 8      | 8      | 7      | 16.2<br>(35.71)  |                     |                                      |                           |
| MS1H2-<br>50C30CD-<br>A334Z(-S4) | (1.10) | (M8x0.79) | (2.13)  | (0.94 <sup>0</sup> -0.01)             | (0.31) | (0.31) | (0.28) | 18.7<br>(41.23)  |                     |                                      |                           |

- Values inside the parentheses "()" are in British units.
- The tightening tension for terminal screws must be between 0.19 N·m to 0.21
   N·m, exceeding of which may damage the terminal.
- Motor models ending with "-S4" represents the duty type S4, indicating the motor works in S4 duty, with the motor load rate not exceeding 70%.

#### **Dimension drawings of MS1H3 series motors**



Figure 2-15 Dimension drawing of MS1H3 series motors

| Motor                                    | LC            | LL             | LR              | LA            | LZ             | KA1           | KB1            | KA2          | KB2           | LG           | LE       | LJ                      | LB            |  |  |
|------------------------------------------|---------------|----------------|-----------------|---------------|----------------|---------------|----------------|--------------|---------------|--------------|----------|-------------------------|---------------|--|--|
| Model                                    |               | Unit: mm (in.) |                 |               |                |               |                |              |               |              |          |                         |               |  |  |
| MS1H3-<br>85B15CB(<br>D)-A331Z<br>MS1H3- | 130<br>(5.12) | 146<br>(5.75)  | 55±1<br>(2.17±0 | 145<br>(5.71) | 4-Ф9<br>(0.16- | 103<br>(4.06) | 72.5<br>(2.85) | 74<br>(2.91) | 125<br>(4.92) | 14<br>(0.55) | 4 (0.16) | 0.5±0.75<br>(0.02±0.03) | 110<br>(4.33) |  |  |
| 85B15CB(<br>D)-A334Z                     | (5.12)        | 182<br>(7.17)  | .04)            | (5.71)        | Ф0.35)         | (4.06)        | (2.85)         | (2.91)       | 161<br>(6.34) | (0.55)       | (0.16)   | (0.02±0.03)             | (4.33)        |  |  |
| MS1H3-<br>13C15CB(<br>D)-A331Z           | 130           | 163<br>(6.42)  | 55±1<br>(2.17±0 | 145.00        | 4-Ф9<br>(0.16- | 103           | 89.5           | 74           | 142<br>(5.59) | 14           | 4        | 0.5±0.75                | 110           |  |  |
| MS1H3-<br>13C15CB(<br>D)-A334Z           | (5.12)        | 199<br>(7.83)  | .04)            | (5.71)        | Ф0.35)         | (4.06)        | (3.52)         | (2.91)       | 178<br>(7.01) | (0.55)       | (0.16)   | (0.02±0.03)             | (4.33)        |  |  |

| Motor                       | LC     | LL             | LR               | LA     | LZ                | KA1    | KB1            | KA2    | KB2            | LG     | LE              | LJ          | LB     |
|-----------------------------|--------|----------------|------------------|--------|-------------------|--------|----------------|--------|----------------|--------|-----------------|-------------|--------|
| Model                       |        |                |                  |        |                   | U      | nit: mm (      | in.)   |                |        |                 |             |        |
| MS1H3-<br>18C15CD-<br>A331Z | 130    | 181<br>(7.13)  | 55±1<br>(2.17±0  | 145    | 4-Ф9<br>(0.16-    | 103    | 107.5          | 74     | 160<br>(6.30)  | 14     | 4               | 0.5±0.75    | 110    |
| MS1H3-<br>18C15CD-<br>A334Z | (5.12) | 217<br>(8.54)  | .04)             | (5.71) | Ф0.35)            | (4.06) | (4.23)         | (2.91) | 196<br>(7.72)  | (0.55) | (0.16)          | (0.02±0.03) | (4.33) |
| MS1H3-<br>29C15CD-<br>A331Z | 180    | 197<br>(7.76)  | 79±1<br>(3.11±0  | 200    | 4-φ13.5<br>(0.16- | 138    | 136<br>(5.35)  | 74     | 177<br>(6.97)  | 18     | 3.2±0.<br>3     | 0.3±0.75    | 114.3  |
| MS1H3-<br>29C15CD-<br>A334Z | (7.09) | 273<br>(10.75) | .04)             | (7.87) | Ф0.53)            | (5.43) | 134<br>(5.28)  | (2.91) | 253<br>(9.96)  | (0.71) | (0.13±<br>0.01) | (0.01±0.03) | (4.50) |
| MS1H3-<br>44C15CD-<br>A331Z | 180    | 230<br>(9.06)  | 79±1<br>(3.11±0  | 200    | 4-φ13.5<br>(0.16- | 138    | 169<br>(6.65)  | 74     | 210<br>(8.27)  | 18     | 3.2±0.<br>3     | 0.3±0.75    | 114.3  |
| MS1H3-<br>44C15CD-<br>A334Z | (7.09) | 307<br>(12.09) | .04)             | (7.87) | Ф0.53)            | (5.43) | 167<br>(6.57)  | (2.91) | 286<br>(11.26) | (0.71) | (0.13±<br>0.01) | (0.01±0.03) | (4.50) |
| MS1H3-<br>55C15CD-<br>A331Z | 180    | 274<br>(10.79) | 113±1<br>(4.45±0 | 200    | 4-φ13.5<br>(0.16- | 138    | 213<br>(8.39)  | 74     | 254<br>(10.00) | 18     | 3.2±0.<br>3     | 0.3±0.75    | 114.3  |
| MS1H3-<br>55C15CD-<br>A334Z | (7.09) | 350<br>(13.78) | .04)             | (7.87) | Ф0.53)            | (5.43) | 211<br>(8.31)  | (2.91) | 330<br>(12.99) | (0.71) | (0.13±<br>0.01) | (0.01±0.03) | (4.50) |
| MS1H3-<br>75C15CD-<br>A331Z | 180    | 330<br>(12.99) | 113±1<br>(4.45±0 | 200    | 4-φ13.5<br>(0.16- | 138    | 269<br>(10.59) | 74     | 310<br>(12.20) | 18     | 3.2±0.<br>3     | 0.3±0.75    | 114.3  |
| MS1H3-<br>75C15CD-<br>A334Z | (7.09) | 407<br>(16.02) | .04)             | (7.87) | Ф0.53)            | (5.43) | 267<br>(10.51) | (2.91) | 386<br>(15.20) | (0.71) | (0.13±<br>0.01) | (0.01±0.03) | (4.50) |

|                                                      | S            | TP                 | LK           | KH                                                | KW          | W           | Т        | Weight                  |                    | Power                                        |                           |
|------------------------------------------------------|--------------|--------------------|--------------|---------------------------------------------------|-------------|-------------|----------|-------------------------|--------------------|----------------------------------------------|---------------------------|
| Motor<br>Model                                       |              |                    |              | Unit: mm (in.)                                    |             |             |          | Unit: kg<br>(lb.)       | Connector<br>Model | Side<br>(Power<br>Brake<br>Side<br>Included) | Encoder<br>Side           |
| MS1H3-<br>85B15CB(<br>D)-A331Z<br>MS1H3-<br>85B15CB( | 22<br>(0.87) | M6x20<br>(M6x0.79) | 36<br>(1.42) | 18 <sup>0</sup> -0.2<br>(0.71 <sup>0</sup> -0.01) | 8<br>(0.31) | 8<br>(0.31) | 7 (0.28) | 7<br>(15.43)<br>8       |                    |                                              |                           |
| D)-A334Z<br>MS1H3-<br>13C15CB(<br>D)-A331Z           | 22           | M6x20              | 36           | 18 <sup>0</sup> -0.2                              | 8           | 8           | 7        | (17.64)<br>8<br>(17.64) |                    |                                              |                           |
| MS1H3-<br>13C15CB(<br>D)-A334Z                       | (0.87)       | (M6x0.79)          | (1.42)       | (0.71 <sup>0</sup> -0.01)                         | (0.31)      | (0.31)      | (0.28)   | 9.50<br>(20.94)         | Aviation           | MI-DTL-<br>5015<br>series                    | MI-DTL-<br>5015<br>series |
| MS1H3-<br>18C15CD-<br>A331Z                          | 22           | M6x20              | 36           | 18 <sup>0</sup> -0.2                              | 8           | 8           | 7        | 9.5<br>(20.94)          | connector          | 3102E20-<br>18P                              | 3102E20-<br>29P           |
| MS1H3-<br>18C15CD-<br>A334Z<br>MS1H3-                | (0.87)       | (M6x0.79)          | (1.42)       | (0.71 <sup>0</sup> -0.01)                         | (0.31)      | (0.31)      | (0.28)   | 11<br>(24.25)           |                    |                                              |                           |
| 29C15CD-<br>A331Z<br>MS1H3-                          | 35           | M12x25             | 65           | 30 <sup>0</sup> -0.2<br>(1.18 <sup>0</sup> -0.01) | 10          | 10          | 8        | 15<br>(33.07)           |                    |                                              |                           |
| 29C15CD-<br>A334Z<br>MS1H3-                          | (1.38)       | (M12x0.98)         | (2.56)       | (1.18* -0.01)                                     | (0.39)      | (0.39)      | (0.31)   | 25.00<br>(55.12)        |                    |                                              |                           |
| 44C15CD-<br>A331Z<br>MS1H3-                          | 35           | M12x25             | 65           | 30 <sup>0</sup> -0.2<br>(1.18 <sup>0</sup> -0.01) | 10          | 10          | 8        | 19.5<br>(42.99)         |                    |                                              |                           |
| 44C15CD-<br>A334Z<br>MS1H3-                          | (1.38)       | (M12x0.98)         | (2.56)       | (1.18, -0.01)                                     | (0.39)      | (0.39)      | (0.31)   | 30<br>(66.14)           |                    |                                              |                           |
| 55C15CD-<br>A331Z                                    | 42           | M16x32             | 96           | 37 <sup>0</sup> -0.2                              | 12          | 12          | 8        | 28<br>(61.73)           | Aviation           | MI-DTL-<br>5015<br>series                    | MI-DTL-<br>5015<br>series |
| MS1H3-<br>55C15CD-<br>A334Z                          | (1.65)       | (M16x1.26)         | (3.78)       | (1.46 <sup>0</sup> -0.01)                         | (0.47)      | (0.47)      | (0.31)   | 38<br>(83.78)           | connector          | 3102E20-<br>22P                              | 3102E20-<br>29P           |
| MS1H3-<br>75C15CD-<br>A331Z                          | 42           | M16x32             | 96           | 37 <sup>0</sup> -0.2                              | 12          | 12          | 8        | 32.00<br>(70.55)        |                    |                                              |                           |
| MS1H3-<br>75C15CD-<br>A334Z                          | (1.65)       | (M16x1.26)         | (3.78)       | (1.46 <sup>0</sup> -0.01)                         | (0.47)      | (0.47)      | (0.31)   | 42<br>(92.59)           |                    |                                              |                           |

- Values inside the parentheses "()" are in British units.
- The tightening tension for terminal screws must be between 0.19 N·m to 0.21 N·m, exceeding of which may damage the terminal.

## **Dimension drawings of MS1H4 series motors**

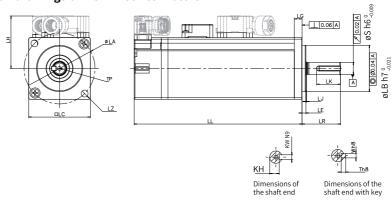



Figure 2-16 Dimension drawing of terminal-type motors

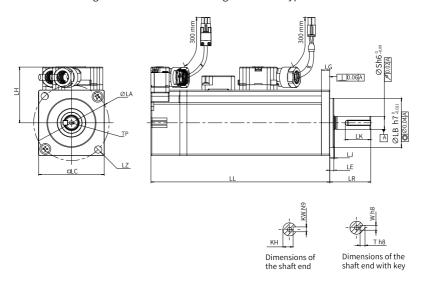



Figure 2-17 Dimension drawing of lead wire-type motors

|                                 | LC     | LL     | LR              | LA             | LZ           | LH     | LG     | LE          | LJ             |
|---------------------------------|--------|--------|-----------------|----------------|--------------|--------|--------|-------------|----------------|
| Motor Model                     |        |        |                 |                | Unit: mm (i  | n.)    |        |             |                |
| MS1H4-<br>40B30CB-              |        | 105    |                 |                |              |        |        |             |                |
| A331Z(-S)                       | 60     | (4.13) | 30±0.5          | 70             | 4-Ф5.5       | 44     | 7.5    | 3±0.5       | 0.5±0.35       |
| MS1H4-                          | (2.36) | 128    | $(1.18\pm0.02)$ | (2.76)         | (0.16-Ф0.22) | (1.73) | (0.3)  | (0.12±0.02) | (0.02±0.01)    |
| 40B30CB-<br>A334Z(-S)           |        | (5.04) |                 |                |              |        |        |             |                |
| MS1H4-                          |        |        |                 |                |              |        |        |             |                |
| 75B30CB-                        |        | 117.5  |                 |                |              |        |        |             |                |
| A331Z(-S)                       | 80     | (4.63) | 35±0.5          | 90             | 4-Ф7         | 54     | 7.7    | 3±0.5       | 0.5±0.35       |
| MS1H4-                          | (3.15) | 147.5  | (1.38±0.02)     | (3.54)         | (0.16-Ф0.28) | (2.13) | (0.3)  | (0.12±0.02) | (0.02±0.01)    |
| 75B30CB-                        |        | (5.81) |                 |                |              |        |        |             |                |
| A334Z(-S)                       |        | (5.61) |                 |                |              |        |        |             |                |
| Motor Model                     | LB     | S      | TP              | LK             | KH           | KW     | W      | Т           | Weight         |
| Motor Model                     |        |        |                 | Unit: mm (in.) |              |        |        |             | Unit: kg (lb.) |
| MS1H4-<br>40B30CB-<br>A331Z(-S) | 50     | 14     | M5x8            | 16.5           | 11           | 5      | 5      | 5           | 1.27<br>(2.8)  |
| MS1H4-                          | (1.97) | (0.55) | (M5x0.31)       | (0.65)         | (0.43)       | (0.20) | (0.20) | (0.20)      | 1.62           |
| 40B30CB-                        |        |        |                 |                |              |        |        |             |                |
| A334Z(-S)                       |        |        |                 |                |              |        |        |             | (3.57)         |
| MS1H4-                          |        |        |                 |                |              |        |        |             | 2.4            |
| 75B30CB-                        |        |        |                 |                |              |        |        |             | (5.29)         |
| A331Z(-S)                       | 70     | 19     | M6x20           | 25             | 15.5         | 6      | 6      | 6           | (3.23)         |
| MS1H4-                          | (2.76) | (0.75) | (M6x0.79)       | (0.98)         | (0.61)       | (0.24) | (0.24) | (0.24)      | 3.04           |
| 75B30CB-                        |        |        |                 |                |              |        |        |             | (6.7)          |
| A334Z(-S)                       |        |        |                 |                |              |        |        |             | (0.1)          |

- Values inside the parentheses "()" are in British units.
- The tightening tension for terminal screws must be between 0.19 N·m to 0.21 N·m, exceeding of which may damage the terminal.
- For dimension drawings of motor models ending with "-S", contact Inovance technical support.

## 2.2.4 Installation Precautions

| Item                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rust-proof<br>treatment | Wipe up the anti-rust agent applied at the motor shaft extension before installing the servo motor, and then take rust-proof measures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Encoder                 | <ul> <li>Do not strike the shaft extension during installation. Failure to comply will damage the encoder.</li> <li>Use the screw hole at the shaft end when mounting a pulley to the servo motor shaft with a keyway. To fit the pulley, insert a double-end screw into the screw hole of the shaft, put a washer on the coupling end, and then use a nut to push the pulley in.</li> <li>For the motor shaft with a keyway, use the screw hole at the shaft end for installation. For the motor shaft without a keyway, use friction coupling or similar methods.</li> <li>When removing the pulley, use a pulley remover to protect the shaft from suffering severe impact from load.</li> <li>To ensure safety, install a protective cover or similar device on the rotary area such as the pulley mounted on the shaft.</li> </ul> |
| Alignment               | When connecting the servo motor to a machine, use a coupling and keep the motor shaft center and the machine shaft center in the same line. When installing the servo motor, make sure the alignment accuracy requirement shown in the following figure is fulfilled. Failure to comply will result in vibration that may damage the bearing and encoder.  Measure the distance at four different positions on the circumference. The difference between the maximum and minimum measured values must be less than 0.03 mm.                                                                                                                                                                                                                                                                                                             |

| Item                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation direction                | The servo motor can be installed horizontally or vertically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Measures<br>against oil and<br>liquid | <ul> <li>Do not submerge the motor/cable in water or oil.</li> <li>Confirm the IP rating of the servo motor when the motor is to be used in a place with water drops (excluding the shaft opening).</li> <li>Flange face Oil seal part at the shaft extension end in the shaft opening Refers to the clearance of the shaft extension from the motor end face.</li> <li>Install the motor with its connecting terminals facing downwards (as shown in the following figure) when the motor is to be used in a place with liquid. This is to prevent the liquid from flowing into the motor along the cable.</li> <li>In environments where the shaft opening is exposed to oil drops, use a servo motor with an oil seal.</li> <li>Observe the following requirements when using the servo motor with an oil seal:</li> <li>Make sure the oil level is lower than the oil seal lip during use.</li> <li>Prevent oil accumulation on the oil seal lip when the motor is installed vertically upward.</li> </ul> |

| Item             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stress of cables | Do not bend or pull the cable with excessive force, especially the signal wires whose conductors are only 0.2 mm or 0.3 mm in thickness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Connectors       | <ul> <li>Pay attention to the following precautions</li> <li>Ensure there are no unwanted objects such as waste or sheet metal inside the connector.</li> <li>Connect the connector to the main circuit cable side of the servo motor first, and make sure the grounding cable of the main circuit cable is connected reliably. If the connector is firstly connected to the encoder cable side, the encoder may become faulty due to the potential difference between PEs.Make sure the pins are correctly arranged during wiring.</li> <li>The connector is made of resin. Do not strike the connector to prevent damage to the connector.</li> <li>When transporting the servo motor with motor cables connected, hold the servo motor by its body instead of cables. Failure to comply may damage the connector and the cable.</li> <li>If flexible cables are used, do not apply stress to the connector during wiring. Failure to comply may damage the connector.</li> </ul> |

## 2.3 Installing the Optional Parts

## 2.3.1 Instructions for the Installing Fuse and Circuit Breaker



To prevent electric shocks, when the fuse is blown or the circuit breaker trips, wait for at least the time designated on the warning label before powering on the drive or operating peripheral devices. Failure to comply will result in death, severe personal injury, or equipment damage.

To comply with EN 61800-5-1 and UL 61800-5-1, install a fuse/circuit breaker on the input side of the servo drive to prevent accidents caused by short circuit in the internal circuit.

## 2.3.2 Instructions for Installing the AC Input Reactor

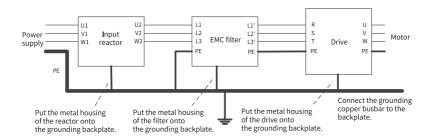



Figure 2-18 Installing the AC input reactor

## 2.3.3 Instructions for Installing the EMC Filter

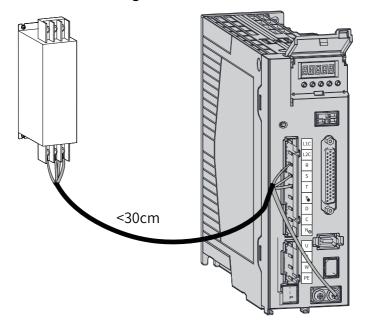



Figure 2-19 Installing the EMC filter

# 2.3.4 Instructions for Installing Magnetic Ring and Ferrite Clamp

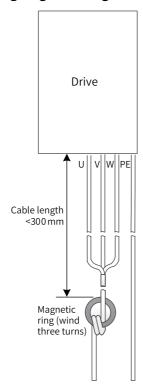



Figure 2-20 Installing the magnetic ring

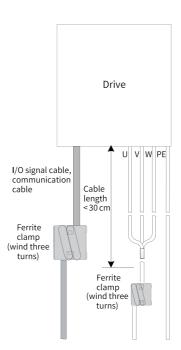



Figure 2-21 Installing the ferrite clamp

# 3 Wiring

# 3.1 Wiring Precautions



Read through the safety instructions in Chapter "Fundamental Safety Instructions". Failure to comply may result in serious consequences.

- Do not use the power from IT system for the drive. Use the power from TN/TT system for the drive. Failure to comply may result in an electric shock.
- Connect an electromagnetic contactor between the input power supply and the
  main circuit power supply of the drive (L1, L2 for single-phase; L1, L2, L3/R, S, T for
  three-phase) to form a structure allowing independent power cutoff on the power
  supply side of the drive. This is to prevent fire accident caused by continuous high
  current generated upon fault.
- Check that the input power supply of the drive is within the specified voltage range. Failure to comply may result in faults.
- Do not connect the output terminals U, V, and W of the drive to a three-phase power supply. Failure to comply may result in physical injury or a fire.
- Do not connect the motor terminals U, V, and W to a mains power supply. Failure to comply may result in physical injury or a fire.
- Use the ALM (fault) signal to cut off the main circuit power supply. A faulty braking transistor may overheat the regenerative resistor and lead to a fire.
- Connect the PE terminal of the drive to the PE terminal of the control cabinet. Failure to comply may result in an electric shock.
- Ground the entire system properly. Failure to comply may result in equipment malfunction.
- After the power supply is cut off, residual voltage is still present in the internal capacitor of the drive, wait for at least 15 min before further operations. Failure to comply may result in an electric shock.



- The specification and installation of external cables must comply with applicable local regulations.
- Observe the following requirements when the servo drive is used on a vertical axis.
  - Set the safety device properly to prevent the workpiece from falling upon warning or overtravel.
  - Ensure the positive/negative polarity of the 24 V power supply is correct.
     Otherwise, the axis may fall and cause personal injury or equipment damage.
- Observe the following requirements during wiring of the power supply and main circuit:
  - When the main circuit terminal is a connector, remove the connector from the servo drive before wiring.
  - Insert one cable into one cable terminal of the connector. Do not insert multiple cables into one cable terminal.
  - When inserting cables, take enough care to prevent the cable conductor burrs from being short circuited to the neighboring cable.
  - Insulate the connecting part of the power supply terminals to prevent electric shock.
  - Do not connect a 220 V servo drive to a 380 V power supply directly.
  - Install safety devices such as a circuit breaker to prevent short circuit in external circuits. Failure to comply may result in a fire.
  - Cut off the main circuit power supply and switch off the S-ON signal after an alarm signal is detected.
- Connect the servo drive to the motor directly. Do not use an electromagnetic contactor during wiring. Failure to comply may result in equipment fault.
- Do not put heavy objects onto cables or pull cables with excessive force. Failure to comply may result in cable damage, leading to an electric shock.
- When connecting DO terminals to relays, ensure the polarity of the flywheel diode is correct. Wrong polarity will result in equipment damage or signal output failure.
- Keep a distance of at least 30 cm between main circuit cables and I/O signal cables/encoder cables. Failure to comply may result in equipment malfunction.
- Use twisted pairs or multi-conductor shielded twisted pairs as the I/O signal cable or encoder cable. Failure to comply may result in equipment malfunction.
- The maximum wiring lengths of the I/O signal cable and the encoder cable are 3 m and 20 m respectively.
- Use a power supply filter to reduce the electromagnetic interference on electronic devices surrounding the servo drive.
- Take proper shielding measures in the following locations to prevent equipment damage:
  - Locations with interference caused by static electricity

- Locations with strong electric field or magnetic field
- Locations with radioactive rays

# 3.2 System Wiring Diagram

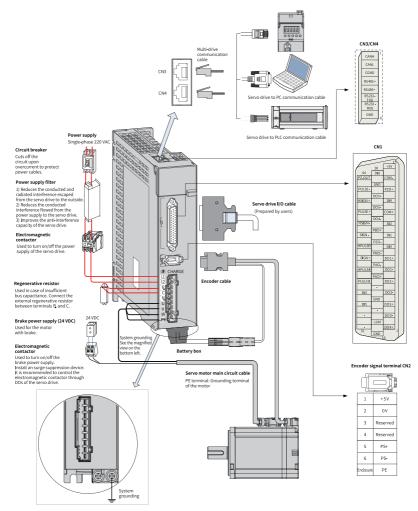



Figure 3-1 Wiring example of a single-phase 220 V system

The servo drive is directly connected to an industrial power supply, with no
isolation such as a transformer. A fuse or circuit breaker therefore must be
connected to the input power supply to prevent electric shock in the servo system.

For the sake of safety, install a residual current device (RCD) to provide protections against overload and short circuit or a specialized RCD to protect the grounding cable.

- Do not start or stop the motor by using the electromagnetic contactor. As a high-inductance device, the motor may generate high voltages instantaneously, which may break down the contactor.
- When connecting an external power supply to the control circuit or a 24 VDC power supply, pay attention to the power capacity as insufficient power capacity will lead to insufficient supply current, resulting in failure of the servo drive or the brake. This is especially true when the power supply is used to power up multiple servo drives or brakes. The brake must be powered up by a 24 VDC power supply that matches the motor model and meets the brake power requirements.

#### Note

[1] CN3 and CN4 are identical communication interfaces with the same pin assignment, and either can be used.

Observe the following precautions when connecting the external regenerative resistor:

- Remove the jumper between P⊕ and D before using the external regenerative resistor. Failure to comply will result in overcurrent and damage the braking transistor.
- Do not connect the external regenerative resistor to the positive or negative pole
  of the bus directly. Failure to comply will damage the servo drive or cause a fire.
- Select a resistor with resistance higher than the minimum permissible value. Failure to comply will result in Er.201 (Overcurrent) or damage the servo drive.
- Make sure parameters H02-25 (Regenerative resistor setting), H02-26 (Power of external regenerative resistor) and H02-27 (Resistance of external regenerative resistor) are set properly before operating the servo drive.
- Install the external regenerative resistor on an incombustible object such as a metal.

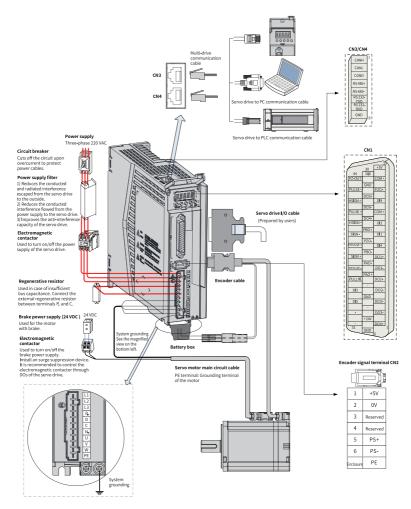



Figure 3-2 Wiring example of a three-phase 220 V system

- The servo drive is directly connected to an industrial power supply, with no
  isolation such as a transformer. A fuse or circuit breaker therefore must be
  connected to the input power supply to prevent electric shock in the servo system.
  For the sake of safety, install a residual current device (RCD) to provide protections
  against overload and short circuit or a specialized RCD to protect the grounding
  cable.
- Do not start or stop the motor by using the electromagnetic contactor. As a highinductance device, the motor may generate high voltages instantaneously, which may break down the contactor.

• When connecting an external power supply to the control circuit or a 24 VDC power supply, pay attention to the power capacity as insufficient power capacity will lead to insufficient supply current, resulting in failure of the servo drive or the brake. This is especially true when the power supply is used to power up multiple servo drives or brakes. The brake must be powered up by a 24 VDC power supply that matches the motor model and meets the brake power requirements.

#### Note

[1] CN3 and CN4 are identical communication interfaces with the same pin assignment, and either can be used.

Observe the following precautions when connecting the external regenerative resistor:

- Remove the jumper between P⊕ and D before using the external regenerative resistor. Failure to comply will result in overcurrent and damage the braking transistor.
- Do not connect the external regenerative resistor to the positive or negative pole
  of the bus directly. Failure to comply will damage the servo drive or cause a fire.
- Select a resistor with resistance higher than the minimum permissible value.
   Failure to comply will result in Er.201 (Overcurrent) or damage the servo drive.
- Make sure parameters H02-25 (Regenerative resistor setting), H02-26 (Power of external regenerative resistor) and H02-27 (Resistance of external regenerative resistor) are set properly before operating the servo drive.
- Install the external regenerative resistor on an incombustible object such as a metal.

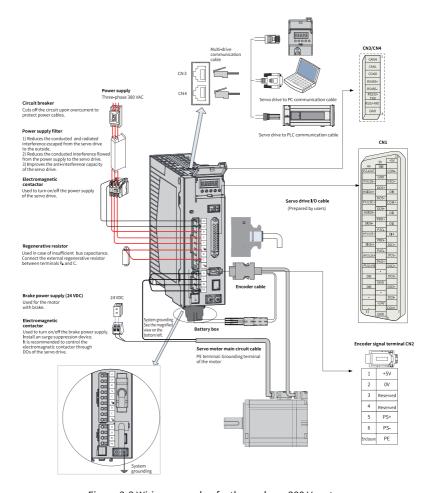



Figure 3-3 Wiring example of a three-phase 380 V system

- The servo drive is directly connected to an industrial power supply, with no
  isolation such as a transformer. A fuse or circuit breaker therefore must be
  connected to the input power supply to prevent electric shock in the servo system.
  For the sake of safety, install a residual current device (RCD) to provide protections
  against overload and short circuit or a specialized RCD to protect the grounding
  cable.
- Do not start or stop the motor by using the electromagnetic contactor. As a highinductance device, the motor may generate high voltages instantaneously, which may break down the contactor.
- When connecting an external power supply to the control circuit or a 24 VDC power supply, pay attention to the power capacity as insufficient power capacity

will lead to insufficient supply current, resulting in failure of the servo drive or the brake. This is especially true when the power supply is used to power up multiple servo drives or brakes. The brake must be powered up by a 24 VDC power supply that matches the motor model and meets the brake power requirements.

#### Note

[1] CN3 and CN4 are identical communication interfaces with the same pin assignment, and either can be used.

Observe the following precautions when connecting the external regenerative resistor:

- Remove the jumper between P⊕ and D before using the external regenerative resistor. Failure to comply will result in overcurrent and damage the braking transistor.
- Do not connect the external regenerative resistor to the positive or negative pole
  of the bus directly. Failure to comply will damage the servo drive or cause a fire.
- Select a resistor with resistance higher than the minimum permissible value.
   Failure to comply will result in Er.201 (Overcurrent) or damage the servo drive.
- Make sure parameters H02-25 (Regenerative resistor setting), H02-26 (Power of external regenerative resistor) and H02-27 (Resistance of external regenerative resistor) are set properly before operating the servo drive.
- Install the external regenerative resistor on an incombustible object such as a metal.

# 3.3 Wiring Diagram for Different Control Modes

# 3.3.1 Wiring Diagram for Position Control Mode

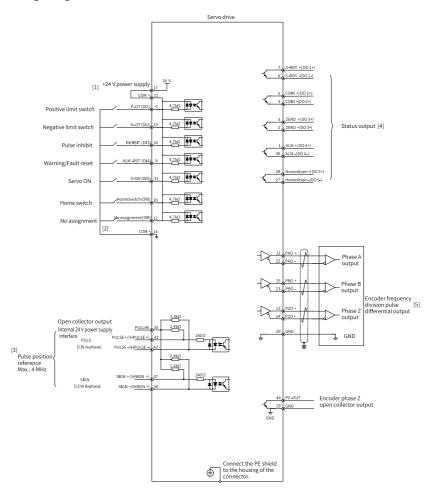



Figure 3-4 Wiring in the position control mode

- [1] The range of the internal +24 V power supply is 20 V to 28 V, with maximum operating current being 200 mA.
- [2] DI8 and DI9 are high-speed DIs that must be used according to their functions assigned.
- [3] Use the shielded twisted pairs for pulse terminals, with both ends of the shield connected to PE. Connect GND and signal GND of the host controller properly.
- [4] The DO power supply (voltage range: 5 V to 24 V) needs to be prepared by users. The DO terminals support a maximum voltage of 30 VDC and a maximum current of 50 mA.
- [5] Use the shielded twisted pair cable as the encoder frequency-division cable, with both ends of the shield connected to PE. Connect GND and signal GND of the host controller properly.

# 3.3.2 Wiring Diagram for Torque Control Mode

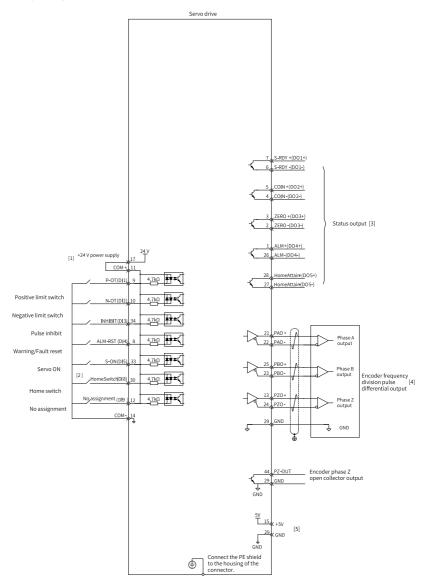



Figure 3-5 Wiring in the torque control mode

- [1] The range of the internal +24 V power supply is 20 V to 28 V, with maximum operating current being 200 mA.
- [2] DI8 and DI9 are high-speed DIs that must be used according to their functions assigned.
- [3] The DO power supply (voltage range: 5 V to 24 V) needs to be prepared by users. The DO terminals support a maximum voltage of 30 VDC and a maximum current of 50 mA.
- [4] Use shielded twisted pair cable as the encoder frequency-division cable, with both ends of the shield connected to PE. Connect GND and signal GND of the host controller properly.
- [5] The internal +5 V power supply supports a maximum current of 200 mA.

# 3.4 Terminal Layout of the Servo Drive

Servo drives in size A (rated power: 200 W to 400 W): SV660PS1R6I and SV660PS2R8I

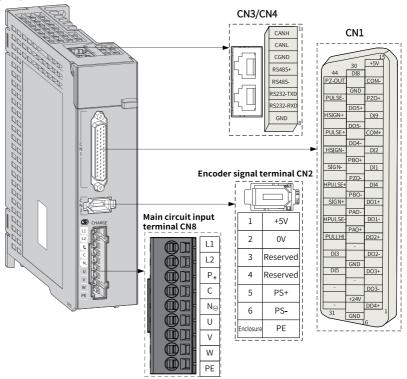



Figure 3-6 Terminal pin layout of servo drives in size A

Wiring

Servo drives in size B (rated power: 750 W): SV660PS5R5I

#### CANH CN1 RS485+ RS485-DI8 RS232-TXD RS232-RXD GND GND DO5+ PULSE+ HSIGN-DI2 **Encoder signal terminal CN2** PBO+ DI1 SIGN-HPULSE DI4 SIGN+ DO1+ Main circuit input terminal CN8 HPULSE DO1-L1 3 Reserved L2 DO2-4 Reserved L3 5 PS+ P⊕ 6 PS-D DO4+ PΕ С N₀ ٧ W PΕ

Figure 3-7 Terminal pin layout of servo drives in size B

# Servo drives in size C and size D (rated power: 1.0 kW to 1.5 kW): size C: SV660PS7R6I; size D: SV660PS012I

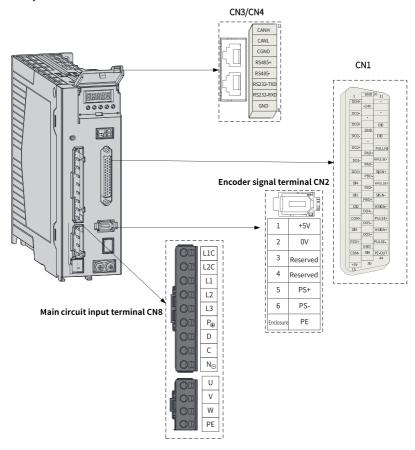



Figure 3-8 Terminal pin layout of servo drives in size C (SV660PS7R6I) and size D (SV660PS012I)

# Servo drives in size C and size D (rated power: 1.0 kW to 3.0 kW): size C: SV660PT3R5I and SV660PT5R4I; size D: SV660PT8R4I and SV660PT012I

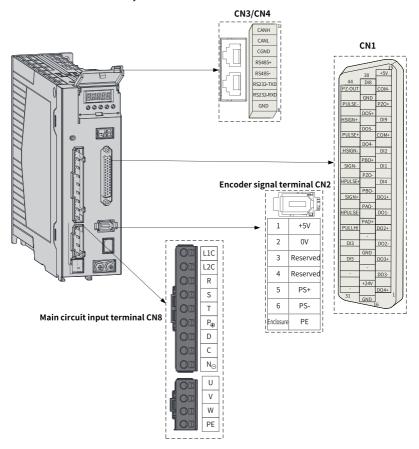



Figure 3-9 Terminal pin layout of servo drives in size C (SV660PT3R5I, SV660PT5R4I) and size D (SV660PT8R4I, SV660PT012I)

# Servo drives in size E (rated power: $5.0~\mathrm{kW}$ to $7.5~\mathrm{kW}$ ): SV660PT017I, SV660PT021I, and SV660PT026I

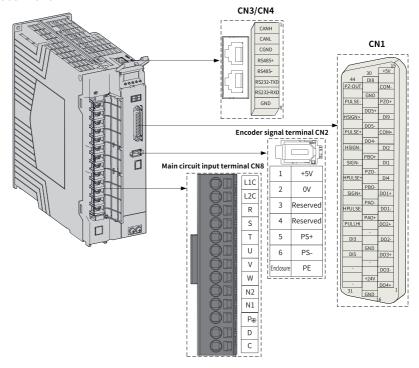



Figure 3-10 Terminal pin layout of servo drives in size E

## 3.4.1 Main Circuit Terminal Pin Layout

Servo drives in size A (rated power: 200 W to 400 W): SV660PS1R6I and SV660PS2R8I

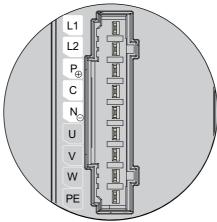



Figure 3-11 Main circuit terminal pin layout of servo drives in size A

Table 3–1 Description of main circuit terminal pins of servo drives in size A

| No. | Name                                                                              | Description                                                                            |  |  |  |
|-----|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| 1   | L1, L2<br>(power input<br>terminals)                                              | See the nameplate for the rated voltage class.                                         |  |  |  |
|     | P⊕, N⊖<br>(DC bus terminals)                                                      | Used by the common DC bus for multiple servo drives.                                   |  |  |  |
| 2   | P⊕ and C<br>(terminals for<br>connecting<br>external<br>regenerative<br>resistor) | If an external regenerative resistor is needed, connect it between terminals P⊕ and C. |  |  |  |
| 3   | U, V, W<br>(terminals for<br>connecting the<br>servo motor)                       | Connected to U, V, and W phases of the servo motor.                                    |  |  |  |
| 4   | Motor grounding terminal                                                          | Connected to the grounding terminal of the motor for grounding purpose.                |  |  |  |

### Servo drives in size B (rated power: 750 W): SV660PS5R5I

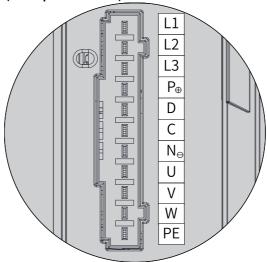



Figure 3-12 Main circuit terminal pin layout of servo drives in size B

Table 3–2 Description of main circuit terminal pins of servo drives in size B

| No. | Name                                                                           | Description                                                                                                                                                                                                                    |  |  |
|-----|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | L1, L2, L3<br>(power input<br>terminals)                                       | See the nameplate for the rated voltage class. Note: S5R5 (750 W) models support single-phase 220 V input only, with a 220 V power supply connected between terminals L1 and L2.                                               |  |  |
|     | P⊕, NΘ<br>(DC bus terminals)                                                   | Used by the common DC bus for multiple servo drives.                                                                                                                                                                           |  |  |
| 2   | P⊕, D, C<br>(terminals for<br>connecting external<br>regenerative<br>resistor) | If an external regenerative resistor is needed, connect it between terminals $P\oplus$ and C. Servo drives in size B are equipped with the built-in regenerative resistor, with terminals $P\oplus$ and D jumpered by default. |  |  |
| 3   | U, V, W<br>(terminals for<br>connecting the<br>servo motor)                    | Connected to U, V, and W phases of the servo motor.                                                                                                                                                                            |  |  |
| 4   | Motor grounding terminal                                                       | Connected to the grounding terminal of the motor for grounding purpose.                                                                                                                                                        |  |  |

Servo drives in size C and size D (rated power: 1.0 kW to 1.5 kW): SV660PS7R6I and SV660PS012I

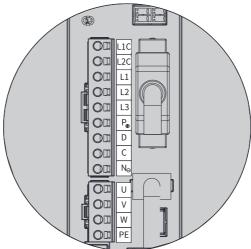



Figure 3-13 Main circuit terminal pin layout of servo drives in size C (SV660PS7R6I) and size D (SV660PS012I)

Table 3–3 Description of main circuit terminal pins of servo drives in size C (SV660PS7R6I) and size D (SV660PS012I)

| No. | Name                                                                              | Description                                                                                                                                                                                                                 |  |  |
|-----|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | L1C, L2C<br>(control circuit<br>power input<br>terminals)                         | See the nameplate for the rated voltage class.                                                                                                                                                                              |  |  |
| 2   | L1, L2, L3<br>(main circuit power<br>input terminals)                             | See the nameplate for the rated voltage class.                                                                                                                                                                              |  |  |
|     | P⊕, NΘ<br>(DC bus terminals)                                                      | Used by the common DC bus for multiple servo drives.                                                                                                                                                                        |  |  |
| 3   | P⊕, D, C<br>(terminals for<br>connecting<br>external<br>regenerative<br>resistor) | If an external regenerative resistor is needed, connect it between terminals P⊕ and C. Servo drives in size C and size D are equipped with the built-in regenerative resistor, with terminals P⊕ and D jumpered by default. |  |  |

| No. | Name                                                        | Description                                                             |  |  |  |
|-----|-------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| 4   | U, V, W<br>(terminals for<br>connecting the<br>servo motor) | Connected to U, V, and W phases of the servo motor.                     |  |  |  |
| 5   | Motor grounding terminal                                    | Connected to the grounding terminal of the motor for grounding purpose. |  |  |  |

Servo drives in size C and size D (rated power: 1.0 kW to 3.0 kW): SV660PT3R5I, SV660PT5R4I, SV660PT8R4I, and SV660PT012I

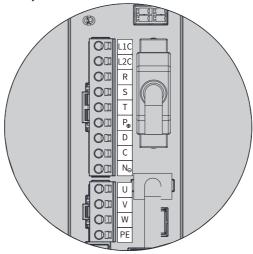



Figure 3-14 Main circuit terminal pin layout of servo drives in size C (SV660PT3R5I, SV660PT5R4I) and size D (SV660PT8R4I, SV660PT012I)

Table 3–4 Description of main circuit terminal pins of servo drives in size C (SV660PT3R5I, SV660PT5R4I) and size D (SV660PT8R4I, SV660PT012I)

| No. | Name                                                      | Description                                    |  |  |  |
|-----|-----------------------------------------------------------|------------------------------------------------|--|--|--|
| 1   | L1C, L2C<br>(control circuit<br>power input<br>terminals) | See the nameplate for the rated voltage class. |  |  |  |
| 2   | R, S, T<br>(main circuit power<br>input terminals)        | See the nameplate for the rated voltage class. |  |  |  |

| No. | Name                                                                              | Description                                                                                                                                                                                                                 |  |  |
|-----|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | P⊕, NΘ<br>(DC bus terminals)                                                      | Used by the common DC bus for multiple servo drives.                                                                                                                                                                        |  |  |
| 3   | P⊕, D, C<br>(terminals for<br>connecting<br>external<br>regenerative<br>resistor) | If an external regenerative resistor is needed, connect it between terminals P⊕ and C. Servo drives in size C and size D are equipped with the built-in regenerative resistor, with terminals P⊕ and D jumpered by default. |  |  |
| 4   | U, V, W<br>(terminals for<br>connecting the<br>servo motor)                       | Connected to U, V, and W phases of the servo motor.                                                                                                                                                                         |  |  |
| 5   | Motor grounding terminal                                                          | Connected to the grounding terminal of the motor for grounding purpose.                                                                                                                                                     |  |  |

Servo drives in size E (rated power: 5.0 kW to 7.5 kW): SV660PT017I, SV660PT021I, and SV660PT026I

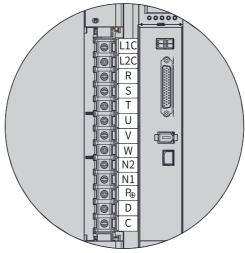
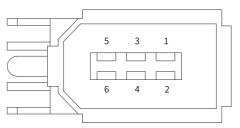




Figure 3-15 Main circuit terminal pin layout of servo drives in size E

Table 3–5 Description of main circuit terminal pins of servo drives in size E

| No. | Name                                                                              | Description                                                                                                                                                                                                      |  |  |  |
|-----|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1   | L1C, L2C<br>(control circuit<br>power input<br>terminals)                         | See the nameplate for the rated voltage class.                                                                                                                                                                   |  |  |  |
| 2   | R, S, T<br>(main circuit power<br>input terminals)                                | See the nameplate for the rated voltage class.                                                                                                                                                                   |  |  |  |
| 3   | U, V, W<br>(terminals for<br>connecting the<br>servo motor)                       | Connected to U, V, and W phases of the servo motor.                                                                                                                                                              |  |  |  |
| 4   | N2, N1<br>Terminals for<br>connecting<br>external reactor                         | Terminals N1 and N2 are jumpered by default. To suppress harmonics in the power supply, remove the jumper between terminals N1 and N2 first and connect an external DC reactor between terminals N1 and N2.      |  |  |  |
| 5   | P⊕, D, C<br>(terminals for<br>connecting<br>external<br>regenerative<br>resistor) | If an external regenerative resistor is needed, connect it between terminals P⊕ and C. Servo drives in size E are equipped with the built-in regenerative resistor, with terminals P⊕ and D jumpered by default. |  |  |  |

# 3.4.2 Description of Encoder Terminal (CN2)



**Encoder signal terminal CN2** 

Figure 3-16 Encoder terminal pin layout

Table 3–6 Description of encoder terminal pins

| No. | Name     | Description      |  |
|-----|----------|------------------|--|
| 1   | +5V      | 5 V power supply |  |
| 2   | 0V       | -                |  |
| 3   | Reserved | -                |  |
| 4   | Reserved | -                |  |

| No.       | Name | Description     |  |
|-----------|------|-----------------|--|
| 5         | PS+  | Encoder signal  |  |
| 6         | PS-  | Lilcodel signat |  |
| Enclosure | PE   | Shield          |  |

# 3.4.3 Description of the Control Terminal (CN1)

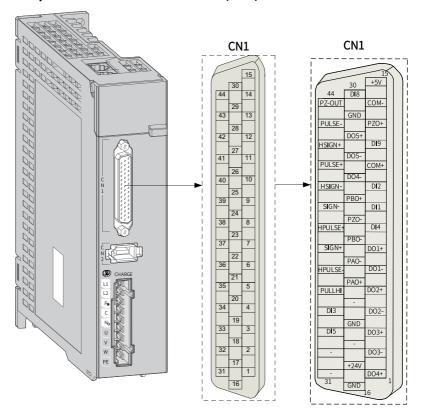



Figure 3-17 Control terminal pin layout of servo drives in sizes A and B

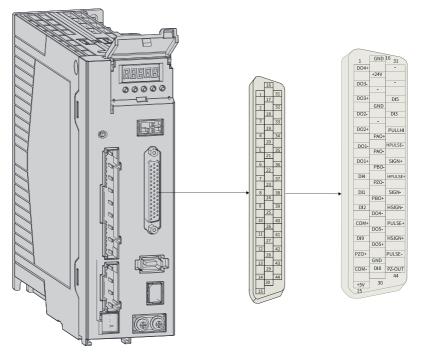



Figure 3-18 Control terminal pin layout of servo drives in sizes C, D, and E

- CN1: Plastic housing of plug on cable side: DB25P (manufacturer: SZTDK), black housing Core: HDB44P male solder (manufacturer: SZTDK)
- It is recommended to use cables of 24AWG to 26AWG.
- Use shielded cables as signal cables, with both ends of the shielded cable grounded.

Table 3–7 Description of position reference input signals

| Signal Name |         | Pin No. | Function                    |                                         |  |
|-------------|---------|---------|-----------------------------|-----------------------------------------|--|
|             | PULSE+  | 41      | Low-speed pulse             | Pulse input form: • Direction+Pulse     |  |
|             | PULSE-  | 43      | reference input mode:       |                                         |  |
| Position    | SIGN+   | 37      | Differential drive          | <ul> <li>Quadrature pulse of</li> </ul> |  |
|             | SIGN-   | 39      | input • Open-collector      | phases A and B • CW/CCW pulse           |  |
| reference   | HPULSE+ | 38      | High-speed input pulse r    | eference                                |  |
|             | HPULSE- | 36      | Tilgii-speed liiput puise i |                                         |  |
|             | HSIGN+  | 42      | High-speed position refe    | ronco sign                              |  |
|             | HSIGN-  | 40      | Tilgii-speed position rele  | rence sign                              |  |

Table 3–8 Description of DI/DO signals

| Signal Name |      | Default<br>Function      | Pin No. | Function                                                          |  |
|-------------|------|--------------------------|---------|-------------------------------------------------------------------|--|
|             | DI1  | P-OT                     | 9       | Positive limit switch                                             |  |
|             | DI2  | N-OT                     | 10      | Negative limit switch                                             |  |
|             | DI3  | INHIBIT 34 Pulse inhibit |         | Pulse inhibit                                                     |  |
|             | DI4  | ALM-RST                  | 8       | Alarm reset (edge-triggered)                                      |  |
|             | DI5  | S-ON                     | 33      | Servo ON                                                          |  |
|             | DI8  | HomeSwitch               | 30      | Home switch                                                       |  |
|             | DI9  | Reserved                 | 12      | -                                                                 |  |
|             | +    | -24V                     | 17      | Internal 24 V power supply,                                       |  |
|             | COM- |                          | 14      | voltage range: 20 V to 28 V,<br>maximum output current: 200<br>mA |  |
| General     | COM+ |                          | 11      | Common terminal of DI terminals                                   |  |
|             | DO1+ | S-RDY+                   | 7       | - Servo ready                                                     |  |
|             | DO1- | S-RDY-                   | 6       | Servo ready                                                       |  |
|             | DO2+ | COIN+                    | 5       | Positioning completed                                             |  |
|             | DO2- | COIN-                    | 4       | 1 ositioning completed                                            |  |
|             | DO3+ | ZERO+                    | 3       | Zero speed                                                        |  |
|             | DO3- | ZERO-                    | 2       | Zero specu                                                        |  |
|             | DO4+ | ALM+                     | 1       | - Fault output                                                    |  |
|             | DO4- | ALM-                     | 26      | Taute output                                                      |  |
|             | DO5+ | HomeAttain+              | 28      | Homing completed                                                  |  |
|             | DO5- | DO5- HomeAttain-         |         | Troming completed                                                 |  |

Table 3–9 Specifications of encoder frequency-division output signals

| Signal<br>Name | Default<br>Function | Pin No.   | Function                                        |                                                |
|----------------|---------------------|-----------|-------------------------------------------------|------------------------------------------------|
| ivairie        |                     | 0.1       | -1                                              |                                                |
|                | PAO+                | 21        | Phase A frequency-                              | Quadrature<br>frequency-division               |
|                | PAO-                | 22        | division output signal                          |                                                |
|                | PBO+                | 25        | Phase B frequency-                              | pulse output signals of phases A               |
|                | PBO-                | 23        | division output signal                          | and B                                          |
|                | PZO+                | 13        | Phase Z frequency-                              | Home pulse output signal                       |
| General        | PZO-                | 24        | division output signal                          |                                                |
|                | PZ-OUT              | 44        | Phase Z frequency-<br>division output<br>signal | Home pulse open-<br>collector output<br>signal |
|                | GND                 | 29        | Home pulse open-collector output signal ground  |                                                |
|                | +5V                 | 15        | Internal 5 V power supply, maximum              |                                                |
|                | GND                 | 16        | output current: 200 mA                          |                                                |
|                | PE                  | Enclosure | -                                               |                                                |

# 3.4.4 Description of Communication Terminals (CN3/CN4)

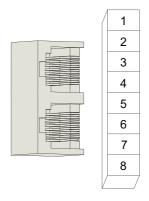



Table 3–10 Description of communication terminal pins

| Pin No. | Assignment | Description            |  |
|---------|------------|------------------------|--|
| 1       | CANH       | CAN communication port |  |
| 2       | CANL       | CAN Communication port |  |
| 3       | CGND       | CAN communication GND  |  |

| Pin No.   | Assignment | Description                                                                   |  |
|-----------|------------|-------------------------------------------------------------------------------|--|
| 4         | RS485+     | RS485 communication port                                                      |  |
| 5         | RS485-     | 103403 communication port                                                     |  |
| 6         | RS232-TXD  | RS232 transmitting end, connected to the receiving end of the host controller |  |
| 7         | RS232-RXD  | RS232 receiving end, connected to the transmitting end of the host controller |  |
| 8         | GND        | Ground                                                                        |  |
| Enclosure | PE         | Shield                                                                        |  |

## 3.5 Connecting the Power supply (RST)

#### 3.5.1 Wiring Precautions

- Do not connect the input power supply cables to the output terminals U, V, and W.
   Failure to comply will damage the servo drive.
- When cables are bundled in a duct, the cooling effect will be deteriorated. In this case, take the permissible current reduction ratio into account.
- When the temperature inside the cabinet exceeds the temperature limit of the
  cable, it is recommended to replace with Teflon cables featuring a higher
  temperature limit. As the surface of regular cables may be easily hardened and
  cracked under a low temperature, take thermal insulation measures for cables laid
  in a low-temperature environment.
- The bending radius of a cable must be 10 times more than its outer diameter to prevent the internal conductor from breaking due to long-time bending.
- Do not bundle power cables and signal cables together or route them through the same duct. Power cables and signal cables must be separated by at least 30 cm to prevent interference.
- High voltage may be still present in the servo drive after the power supply is switched off. Do not touch the power supply terminals within 15 minutes after power-off.
- Do not switch on/off the power supply frequently. If the power supply is switched on or off frequently within 1s, Er.740/Er.136/Er.430 may occur (see Chapter "Troubleshooting" in SV660P Series Servo Drive Commissioning Guide for details). In this case, power on the servo drive again after waiting for the specified ON/OFF interval. If frequent ON/OFF control is needed, keep an ON/OFF interval of at least 1 min.

The servo drive carries a capacitor in the power supply part, and this capacitor will be charged with a high current for 0.2s upon power-on. Turning on/off the power supply frequently degrades the performance of main circuit components inside the servo drive.

- Use a grounding cable of the same cross-sectional area as the main circuit cable. If the cross-sectional area of the main circuit cable is less than 1.6 mm<sup>2</sup>, use a grounding cable with a cross-sectional area of 2.0 mm<sup>2</sup>.
- Do not power on the servo drive if terminal screws or cables are loose. Failure to comply may lead to a fire.

## 3.5.2 Main Circuit Wiring Requirements

Servo drive power input cables and motor cables may generate strong electromagnetic interference. To prevent the electromagnetic interference incurred by long-distance parallel routing and coupling between disturbing cables and control cables, keep a clearance of at least 30 cm between main circuit cables and signal cables. Main circuit cables include the RST cable, UVW cable, DC bus, and braking cable. Signal cables include the I/O signal cable, communication cable, and encoder cable.

Cable ducts must be connected and grounded properly. Aluminum cable ducts can be used to ensure equipotentiality of the device. The filter, servo drive, and motor must be properly connected to systems (machines or devices), with spraying protection applied at the installation part and the conductive metal kept in full contact.

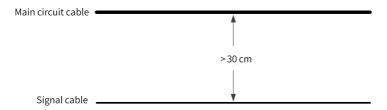



Figure 3-19 Cable layout

#### Wiring requirements

The wiring mode compliant with the Low Voltage Directive is supported.

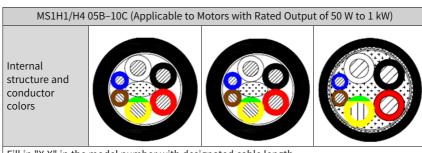
- Terminals P⊕, C, and NΘ are used to connect optional parts. Do not connect these terminals to an AC power supply.
- To protect the main circuit, separate and cover the surface that may come into contact with the main circuit.
- Do not allow unwanted objects to enter the wiring part of the terminal block.
- Do not solder the twisted conductors.
- The tightening torque may vary with terminals. Tighten terminal screws with the specified tightening torque. You can use a torque screwdriver, torque ratchet, or torque wrench to tighten terminal screws.

- When using an electric screwdriver to tighten terminal screws, set the electric screwdriver to low speed to prevent damage to the terminal screws.
- Tighten the terminal screws with an angle not higher than 5°. Failure to comply may damage the terminal screws.

## 3.5.3 Recommended Cable Specifications and Models

Table 3–11 Input/Output current specifications of the servo drive

| Servo Drive Model****I |      | Rated Input   | Rated Output | Maximum Output |
|------------------------|------|---------------|--------------|----------------|
|                        |      | Current (A)   | Current (A)  | Current (A)    |
|                        |      | Single-phase  | 220 V        |                |
| Size A                 | S1R6 | 2.3           | 1.6          | 5.8            |
| Size A                 | S2R8 | 4             | 2.8          | 10.1           |
| Size B                 | S5R5 | 7.9           | 5.5          | 16.9           |
| Size C                 | S7R6 | 9.6           | 7.6          | 23             |
| Size D                 | S012 | 12.8          | 11.6         | 32             |
|                        |      | Three-phase 2 | 220 V        |                |
| Size C                 | S7R6 | 5.1           | 7.6          | 23             |
| Size D                 | S012 | 8             | 11.6         | 32             |
|                        |      | Three-phase 3 | 380 V        |                |
| Size C                 | T3R5 | 2.4           | 3.5          | 11             |
| Size C                 | T5R4 | 3.6           | 5.4          | 14             |
| Size D                 | T8R4 | 5.6           | 8.4          | 20             |
| Size D                 | T012 | 8             | 11.9         | 29.75          |
|                        | T017 | 12            | 16.5         | 41.25          |
| Size E                 | T021 | 16            | 20.8         | 52.12          |
|                        | T026 | 21            | 25.7         | 64.25          |


Table 3–12 Recommended main circuit terminal cables and tightening torque

|             |                    | Rated   | Recomr             | mended PVC (       | Cable Model (      | at 40°C)   |
|-------------|--------------------|---------|--------------------|--------------------|--------------------|------------|
| Servo Drive | Servo Drive        | Input   | L1, L2/L1,         | R, S, T            | Cable Lug          | Tightening |
| Series      | Model              | Current | L2, L3             | (mm <sup>2</sup> ) | (mm <sup>2</sup> ) | Torque     |
|             |                    | (A)     | (mm <sup>2</sup> ) | (111111)           | (111111 )          | (N·m)      |
|             | Single-phase 220 V |         |                    |                    |                    |            |
| Size A      | SV660PS1<br>R6I    | 2.3     | 0.75               | -                  | -                  | -          |
| SIZE A      | SV660PS2<br>R8I    | 4       | 0.75               | -                  | -                  | -          |
| Size B      | SV660PS5<br>R5I    | 7.9     | 0.75               | -                  | -                  | -          |

|                       |                      | Rated                   | Recomr                        | mended PVC       | Cable Model (      | at 40°C)                |
|-----------------------|----------------------|-------------------------|-------------------------------|------------------|--------------------|-------------------------|
| Servo Drive<br>Series | Servo Drive<br>Model | Input<br>Current<br>(A) | L1, L2/L1,<br>L2, L3<br>(mm²) | R, S, T<br>(mm²) | Cable Lug<br>(mm²) | Tightening Torque (N·m) |
| Size C                | SV660PS7<br>R6I      | 9.6                     | 1                             | -                | -                  | -                       |
| Size D                | SV660P<br>S012I      | 12.8                    | 1.5                           | -                | -                  | -                       |
|                       |                      | Th                      | ree-phase 22                  | 0 V              |                    |                         |
| Size C                | SV660PS7<br>R6I      | 5.1                     | 0.75                          | -                | -                  | -                       |
| Size D                | SV660P<br>S012I      | 8                       | 0.75                          | -                | -                  | -                       |
|                       |                      | Th                      | ree-phase 38                  | 0 V              |                    |                         |
| Size C                | SV660PT3<br>R5I      | 2.4                     | -                             | 0.75             | -                  | -                       |
| Size C                | SV660PT5<br>R4I      | 3.6                     | -                             | 0.75             | -                  | -                       |
| Size D                | SV660PT8<br>R4I      | 5.6                     | -                             | 0.75             | -                  | -                       |
| Size D                | SV660P<br>T012I      | 8                       | -                             | 0.75             | -                  | -                       |
|                       | SV660P<br>T017I      | 12                      | -                             | 1.5              | 1.5                | 1.36                    |
| Size E                | SV660P<br>T021I      | 16                      | -                             | 2.5              | 2.5                | 1.36                    |
|                       | SV660P<br>T026I      | 21                      | -                             | 4                | 4                  | 1.36                    |

Table 3–13 Specifications of motor output cables

| MS1H1/H4             | MS1H1/H4 05B–10C (Applicable to Motors with Rated Output of 50 W to 1 kW)                                                    |                                                                                                                              |                                                                                                                              |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Cable type           | Regular cable                                                                                                                | Flexible cable                                                                                                               | Oil-resistant shielded flexible cable                                                                                        |  |
| Cable model          | S6-L-M/B***-X.X                                                                                                              | S6-L-M/B***-X.X-T                                                                                                            | S6-L-M/B***-X.X-TS                                                                                                           |  |
| Cable specifications | UL2517 (rated<br>temperature: 105°C)<br>4Ex20AWG+2Cx24AWG<br>Power cable: 20AWG<br>(0.52 mm²) Insulation<br>diameter: 1.7 mm | UL2517 (rated<br>temperature: 105°C)<br>4Ex20AWG+2Cx24AWG<br>Power cable: 20AWG<br>(0.52 mm²) Insulation<br>diameter: 1.7 mm | UL2517 (rated<br>temperature: 105°C)<br>4Ex20AWG+2Cx24AWG<br>Power cable: 20AWG<br>(0.52 mm²) Insulation<br>diameter: 1.7 mm |  |
|                      | Brake cable: 24AWG<br>(0.205 mm²) Insulation<br>diameter: 1.1 mm                                                             | Brake cable: 24AWG<br>(0.205 mm²) Insulation<br>diameter: 1.1 mm                                                             | Brake cable: 24AWG<br>(0.205 mm²) Insulation<br>diameter: 1.1 mm                                                             |  |
| Sheath diameter      |                                                                                                                              | 6.5±0.2 mm                                                                                                                   |                                                                                                                              |  |



Fill in "X.X" in the model number with designated cable length.

Table 3-14 Specifications of motor output cables

| MS1H2 10C–50C (Applicable to Motors with Rated Output of 1 kW to 5 kW)/MS1H3 |                                                                     |                                                                   |                                                                   |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--|
| 85B-18                                                                       | 85B–18C (Applicable to Motors with Rated Output of 850 W to 1.8 kW) |                                                                   |                                                                   |  |
| Cable type                                                                   | Regular cable                                                       | Flexible cable                                                    | Oil-resistant shielded flexible cable                             |  |
| Cable model                                                                  | S6-L-M/B***-X.X                                                     | S6-L-M/B***-X.X-T                                                 | S6-L-M/B***-X.X-TS                                                |  |
|                                                                              | UL2586 (rated<br>temperature: 105°C)<br>4Ex16AWG, 2Cx18AWG          | UL2586 (rated<br>temperature: 105°C)<br>4Ex16AWG, 2Cx18AWG        | UL2586 (rated<br>temperature: 105°C)<br>4Ex16AWG, 2Cx18AWG        |  |
| Cable specifications                                                         | Power cable: 16AWG<br>(1.31 mm²) Insulation<br>diameter: 3.1 mm     | Power cable: 16AWG<br>(1.31 mm²) Insulation<br>diameter: 3.25 mm  | Power cable: 16AWG<br>(1.31 mm²) Insulation<br>diameter: 3.25 mm  |  |
|                                                                              | Brake cable: 18AWG<br>(0.823 mm²) Insulation<br>diameter: 2.0 mm    | Brake cable: 18AWG<br>(0.823 mm²) Insulation<br>diameter: 2.15 mm | Brake cable: 18AWG<br>(0.823 mm²) Insulation<br>diameter: 2.15 mm |  |
| Sheath diameter                                                              | 9.5±0.3 mm (main circuit)                                           | 10.0±0.3 mm (main circuit)                                        | 10.5±0.3 mm (main circuit)                                        |  |
| Internal<br>structure and<br>conductor<br>colors                             |                                                                     |                                                                   |                                                                   |  |

Fill in "X.X" in the model number with designated cable length.

Table 3–15 Specifications of motor output cables

| MS1H3 29C–75C (Applicable to Motors with Rated Output of 2.9 kW to 7.5 kW) |                                                                  |                                                                   |                                                                   |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Cable type                                                                 | Regular cable                                                    | Flexible cable                                                    | Oil-resistant shielded flexible cable                             |  |
| Cable model                                                                | S6-L-M/B***-X.X                                                  | S6-L-M/B***-X.X-T                                                 | S6-L-M/B***-X.X-TS                                                |  |
|                                                                            | UL2586 (rated<br>temperature: 105°C)<br>4Ex12AWG, 2Cx18AWG       | UL2586 (rated<br>temperature: 105°C)<br>4Ex12AWG, 2Cx18AWG        | UL2586 (rated<br>temperature: 105°C)<br>4Ex12AWG, 2Cx18AWG        |  |
| Cable specifications                                                       | Power cable: 12AWG<br>(3.31 mm²) Insulation<br>diameter: 4.1 mm  | Power cable: 12AWG<br>(3.31 mm²) Insulation<br>diameter: 4.2 mm   | Power cable: 12AWG<br>(3.31 mm²) Insulation<br>diameter: 4.2 mm   |  |
|                                                                            | Brake cable: 18AWG<br>(0.823 mm²) Insulation<br>diameter: 2.0 mm | Brake cable: 18AWG<br>(0.823 mm²) Insulation<br>diameter: 2.15 mm | Brake cable: 18AWG<br>(0.823 mm²) Insulation<br>diameter: 2.15 mm |  |
| Sheath diameter                                                            | 12.2±0.4 mm (main circuit)                                       | 12.5±0.4 mm (main circuit)                                        | 13.2±0.4 mm (main circuit)                                        |  |
| Internal<br>structure and<br>conductor<br>colors                           |                                                                  |                                                                   |                                                                   |  |

Fill in "X.X" in the model number with designated cable length.

#### Cable selection

To comply with the EMC standards, use shielded cables. Shielded cables are divided into three-conductor shielded cables and four-conductor shielded cables, as shown in the following figure.

If the conductivity of the three-conductor cable shield is insufficient, add an extra PE cable or use a four-conductor shielded cable, with one conductor of which being PE cable. The cable shield must be made of co-axial copper braids with a weaving density larger than 90% to enhance the shielding and conductivity performance and suppress radio frequency interference.

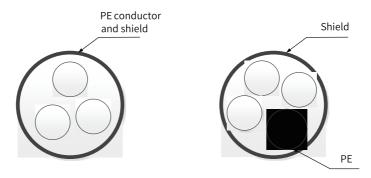



Figure 3-20 Recommended power cables

Observe national or regional regulations when selecting cable dimensions. The IEC cable must meet the following requirements:

- Complying with standards EN 60204-1 and IEC 60364-5-52
- PVC cable with copper conductors
- Allowing the cable surface temperature to be lower than or equal to 70°C under an ambient temperature of 40°C (When the ambient temperature exceeds 40°C, contact Inovance.)

Requirements for UL cable selection are described in "Cable requirements" on page 148.

#### Note

If the recommended cable specifications for peripheral devices or optional parts exceed the applicable cable specification range, contact Inovance.

# 3.5.4 Wiring of the Power Supply

 Single-phase 220 V models: SV660PS1R6I, SV660PS2R8I, SV660PS5R5I, SV660PS7R6I, and SV660PS012

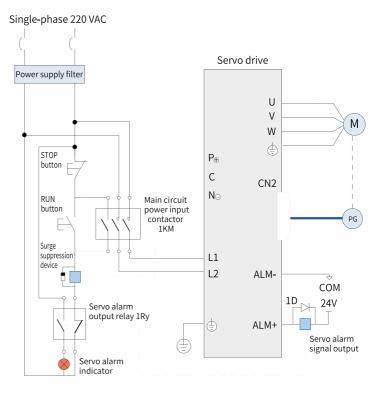



Figure 3-21 Main circuit wiring of single-phase 220 V models

- 1KM: Electromagnetic contactor; 1Ry: Relay; 1D: Flywheel diode
- The DO is set as alarm output (ALM+/-). When the servo drive alarms, the power supply is cut off automatically. The built-in regenerative resistor is not available in models SV660PS1R6 and SV660PS2R8. For these models, you can connect an external regenerative resistor between terminals P⊕ and C as needed.
- Three-phase 220 V models: SV660PS7R6I, SV660PS012I

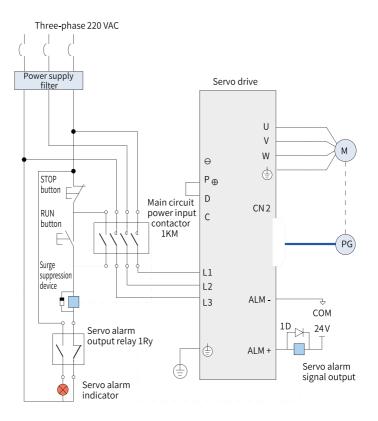



Figure 3-22 Main circuit wiring of three-phase 220 V models

- 1KM: Electromagnetic contactor; 1Ry: Relay; 1D: Flywheel diode
- The DO is set as alarm output (ALM+/-). When the servo drive alarms, the power supply is cut off automatically and the alarm indicator lights up.
- Three-phase 380 V models: SV660PT3R5I, SV660PT5R4I, SV660PT8R4I, SV660PT012I, SV660PT021I, SV660PT026I

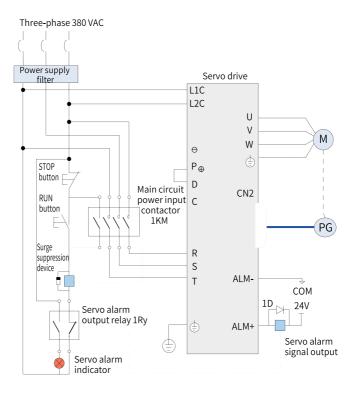



Figure 3-23 Main circuit wiring of three-phase 380 V models

- 1KM: Electromagnetic contactor; 1Ry: Relay; 1D: Flywheel diode
- The DO is set as alarm output (ALM+/-). When the servo drive alarms, the power supply is cut off automatically and the alarm indicator lights up.

### 3.5.5 Wiring of External EMC Filter

Install the filter near the input terminals of the drive. The cable between the filter and the drive must be shorter than 30 cm. Connect the grounding terminal of the filter together with the grounding terminal of the drive. Ensure the filter and the drive are installed onto the same conductive mounting surface that is connected to the main grounding of the control cabinet.

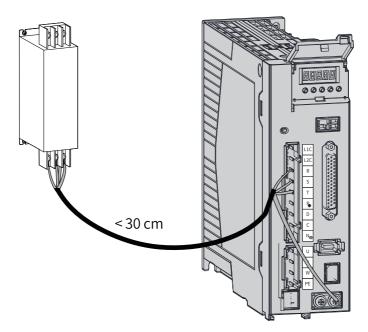



Figure 3-24 Installing the filter

Keep the lead wire of the motor cable shield as short as possible, with its width (b in the following figure) not shorter than 1/5 of its length (a in the following figure).

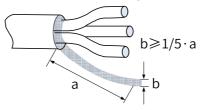



Figure 3-25 Lead-out of the motor cable shield

# 3.5.6 Grounding and Wiring

Observe the following requirements to ensure a proper grounding of the servo drive.



- To prevent electric shocks, ground the grounding terminal properly. Observe related national or regional regulations during wiring.
- To prevent electric shocks, ensure the protective grounding conductor complies
  with technical specifications and local safety standards. Keep the length of the
  grounding cable as short as possible. As the leakage current of the equipment may
  exceed 3.5 mA, use a copper protective grounding conductor with a crosssectional area of at least 10 mm<sup>2</sup> according to standard EN 61800-5-1, or use two
  protective grounding conductors with the same specification.
- Use a grounding cable that complies with electrical device technical standards and keep the length of the grounding cable as short as possible. Failure to comply will lead to unstable potential in the grounding terminals away from the grounding point due to leakage current, resulting in an electric shock.



- For use of multiple drives, observe all the grounding instructions for the drive.
   Improper grounding of the device will lead to malfunction of the drive and the device.
- Do not share the same grounding cable with other devices (such as welding machines or high-current electrical devices). Improper grounding of the device will lead to drive or device faults caused by electrical interference.
- For use of multiple drives, observe all the grounding instructions for the drive.
   Improper grounding of the device will lead to malfunction of the drive and the device.
- For drives equipped with optional VDR grounding screws, remove the grounding screw before voltage resistance test. Failure to comply may cause the drive to fail the test.

#### **Grounding requirements**

Observe the following requirements to ensure a proper grounding of the drive.

- The protective grounding conductor must be a yellow/green copper conductor. Do
  not connect the protective grounding conductor to a switching device (such as a
  circuit breaker) in serial.
- Ground the grounding terminal properly. Improper grounding will lead to equipment malfunction or damage.
- Do not connect the grounding terminal to the N terminal of the neutral wire of the power supply.

- It is recommended to install the drive to a conductive metal surface. Ensure the whole conductive bottom of the drive is connected properly to the mounting face.
- Tighten the grounding screw with specified tightening torque to prevent the protective grounding conductor from being secured improperly.

### Single-drive grounding

Installation of an individual drive:

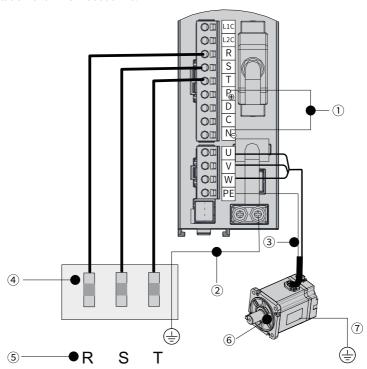



Table 3–16 Single-drive grounding

| No. | Description                                                                                     |
|-----|-------------------------------------------------------------------------------------------------|
| 1   | Do not ground the DC bus terminal or the regenerative resistor terminal.                        |
| 2   | Connect the PE cable on the input power supply end to the input PE terminal of the servo drive. |
| 3   | Connect the output PE terminal of the servo drive to the motor output cable shield.             |
| 4   | Input protection (fuse or circuit breaker) Connect the lower end of the fuse to the filter.     |
| (5) | Input power supply                                                                              |
| 6   | Three-phase motor                                                                               |

| No. | Description                 |
|-----|-----------------------------|
| 7   | Ground the motor enclosure. |

Note: The main circuit terminal layout varies with different models and is subject to the physical product.

### **Multi-drive grounding**

Side-by-side installation of multiple drives:

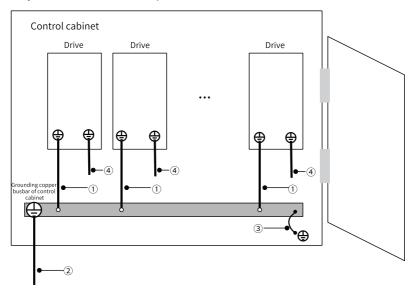



Table 3-17 Multi-drive grounding

| No. | Description                                                                                                                                          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1)  | Connect the main circuit input PE terminal to the grounding copper busbar of the control cabinet through the protective grounding conductor.         |
| 2   | Connect the PE cable on the input power supply end to the grounding copper busbar of the control cabinet.                                            |
| 3   | Connect the grounding copper busbar of the control cabinet to the metal enclosure of the control cabinet through the protective grounding conductor. |
| 4   | Connect the motor output cable shield to the output PE terminal of the drive.                                                                        |

### **Cabinet system grounding**

The most effective measure to suppress disturbance inside the cabinet is to isolate the disturbance source from the disturbed devices during installation. Divide the control cabinet into several EMC areas or several cabinets based on the intensity of

the disturbance source, and install devices into corresponding areas based on the requirements listed in the following table.

Table 3–18 Wiring requirements

| No. | Wiring requirements                                                                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Install the control devices and drive devices into two separate cabinets.                                                                                                                              |
| 2   | For installation involving multiple cabinets, use the grounding cable with a cross-sectional area of at least 16 mm² to connect the cabinets. This is to ensure equipotentiality between the cabinets. |
| 3   | For installation involving only one cabinet, install different devices into different areas inside the cabinet according to the signal intensity.                                                      |
| 4   | Apply equipotential bonding to devices in different areas inside the cabinet.                                                                                                                          |
| 5   | Shield all the communication (such as RS485) cables and signal cables routed out from the control cabinet.                                                                                             |
| 6   | Install the power input filter inside the cabinet to a place near the input interface of the cabinet.                                                                                                  |
| 7   | Apply spray coating to all the grounding points in the cabinet.                                                                                                                                        |

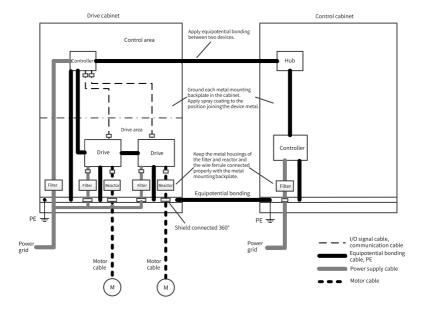



Figure 3-26 Recommended wiring of the cabinet system

#### Recommended grounding cable lug for the main circuit

Table 3–19 Recommended grounding cable lug for the main circuit

| Ser    | vo Drive Model SV660P****I | PE                                      |  |  |
|--------|----------------------------|-----------------------------------------|--|--|
| Size A | SV660PS1R6I                | TVR 2-4 TVR 2-4 TVR 2-4 TVR 2-4 TVR 2-4 |  |  |
| SIZE A | SV660PS2R8I                | TVR 2-4                                 |  |  |
| Size B | SV660PS5R5I                | TVR 2-4                                 |  |  |
|        | SV660PS7R6I                | TVR 2-4                                 |  |  |
| Size C | SV660PT3R5I                | TVR 2-4                                 |  |  |
|        | SV660PT5R4I                | TVR 2-4                                 |  |  |
|        | SV660PS012I                | TVR 2-4                                 |  |  |
| Size D | SV660PT8R4I                | TVR 2-4                                 |  |  |
|        | SV660PT012I                | TVR 2-4                                 |  |  |
|        | SV660PT017I                | TVR 2-4                                 |  |  |
| Size E | SV660PT021I                | TVR 2-4                                 |  |  |
|        | SV660PT026I                | TVR 2-4                                 |  |  |

The following table lists the data for recommended cable lugs (manufacturer: Suzhou Yuanli Metal Enterprise Co., Ltd) for your reference.

Table 3–20 Dimension drawing of the grounding cable lug

| Model |     | D (mm) | d2 (mm) | B (mm) | Dimension Drawing |
|-------|-----|--------|---------|--------|-------------------|
| TVR   | 2-4 | 4.5    | 4.3     | 8.5    | 4d2               |

# 3.6 Connecting the Motor (UVW)

• The following figure shows the wiring diagram for a terminal-type motor.

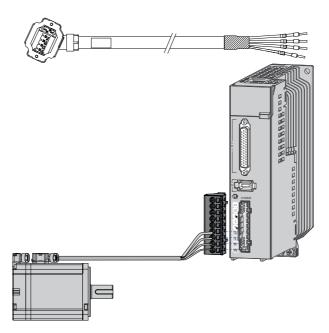



Figure 3-27 Wiring between the servo drive and terminal-type motor Table 3-21 Description of the power cable connector (motor side)

| Applicable                                                 | Outline Drawing of the Connector |         | Terminal Pin Layout |              |                  |  |
|------------------------------------------------------------|----------------------------------|---------|---------------------|--------------|------------------|--|
| Motor Flange<br>Size <sup>[1]</sup>                        |                                  |         | Pin No.             | Signal Name  | Color            |  |
| Terminal-<br>type motor:<br>40 (Z series)<br>60 (Z series) | notor: series) series)           | 5 6     | 1                   | PE           | Yellow/<br>Green |  |
|                                                            |                                  |         | 2                   | W            | Red              |  |
|                                                            |                                  | 3       | 3                   | V            | Black            |  |
|                                                            |                                  |         | 4                   | U            | White            |  |
| 80 (Z series)                                              |                                  | 5       | Brake (polarity     | Brown        |                  |  |
|                                                            | Black 6-pin cor                  | nnector | 6                   | insensitive) | Blue             |  |

- $\bullet \quad [1]$  The flange size refers to the width of the mounting flange.
- Power cable colors are subject to the actual product. All cable colors mentioned in this guide refer to Inovance cable colors.
- The wiring diagram for a lead wire-type motor is shown in the following figure.

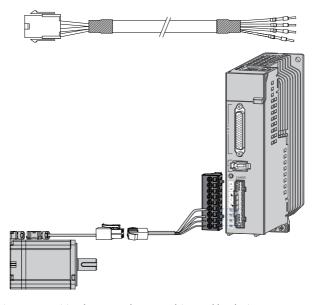



Figure 3-28 Wiring between the servo drive and lead wire-type motor Table 3-22 Description of the power cable connector (motor side)

| Applicable                                  | Outline Drawing of the                                                                                  | Te      | Terminal Pin Layout          |         |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|------------------------------|---------|--|--|
| Motor Flange<br>Size <sup>[1]</sup>         | Connector                                                                                               | Pin No. | Signal Name                  | Color   |  |  |
|                                             |                                                                                                         | 1       | U                            | White   |  |  |
|                                             |                                                                                                         | 2       | V                            | Black   |  |  |
| Lead wire-<br>type motor<br>40 (Z-S series) | 5 2                                                                                                     | 3       | W                            | Red     |  |  |
|                                             |                                                                                                         | 4       | PE                           | Yellow/ |  |  |
|                                             | 6 3                                                                                                     | 4       |                              | Green   |  |  |
| 60 (Z-S series)                             | ies)                                                                                                    | 5       |                              | Brown   |  |  |
| 80 (Z-S series)                             | Black 6-pin connector<br>Recommendation: Plastic<br>housing: MOLEX-50361736<br>Terminal: MOLEX-39000061 | 6       | Brake (polarity insensitive) | Blue    |  |  |

- [1] The flange size refers to the width of the mounting flange.
- Power cable colors are subject to the actual product. All cable colors mentioned in this guide refer to Inovance cable colors.
- The following table describes the connector for high-power motor power cables.

Table 3–23 Description of the power cable connector (motor side)

| Applicable                                 | Outline Drawing of the                                 | Terminal Pin Layout |                        |              |  |  |
|--------------------------------------------|--------------------------------------------------------|---------------------|------------------------|--------------|--|--|
| Motor Flange Size <sup>[1]</sup> Connector |                                                        | Pin No.             | Signal Name            | Color        |  |  |
|                                            |                                                        | В                   | U                      | Blue         |  |  |
| 100<br>130                                 | 20-18 aviation connector                               | 1                   | V                      | Black        |  |  |
|                                            |                                                        | F                   | W                      | Red          |  |  |
|                                            | BO IO OF                                               | G                   | PE                     | Yellow/Green |  |  |
|                                            | MIL-DTL-5015 series 3108E20-<br>18S aviation connector | С                   | Brake                  | Red          |  |  |
|                                            |                                                        | E                   | (polarity insensitive) | Black        |  |  |

Table 3–24 Description of the power cable connector (motor side)

| Applicable                          | Outline Drawing of the                                 | Terminal Pin Layout |                        |              |  |
|-------------------------------------|--------------------------------------------------------|---------------------|------------------------|--------------|--|
| Motor Flange<br>Size <sup>[1]</sup> | Connector                                              | Pin No.             | Signal Name            | Color        |  |
|                                     |                                                        | Α                   | U                      | Blue         |  |
| 180                                 | 20-22 aviation connector                               | С                   | V                      | Black        |  |
|                                     |                                                        | E                   | W                      | Red          |  |
|                                     | (B° O°D)                                               | F PE                | PE                     | Yellow/Green |  |
|                                     | MIL-DTL-5015 series 3108E20-<br>22S aviation connector | В                   | Brake                  | Red          |  |
|                                     |                                                        | D                   | (polarity insensitive) | Black        |  |

- [1] The flange size refers to the width of the mounting flange.
- Power cable colors are subject to the actual product. All cable colors mentioned in this guide refer to Inovance cable colors.

## 3.7 Connecting the Encoder (CN2)

#### 3.7.1 Installing Absolute Encoder Battery Box

The optional S6-C4 battery box contains the following items:

- One plastic body
- One battery (3.6 V, 2600 mAh)
- Terminal block and crimping terminal

### Installing the battery box

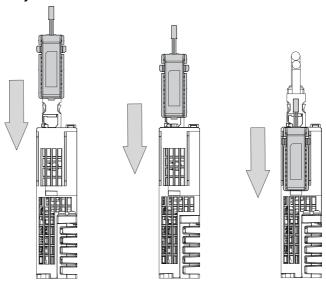
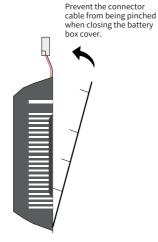




Figure 3-29 Installing the battery box (bottom view)

#### Removing the battery box

The battery may generate leakage liquid after long-term use. Replace it every two years. Remove the battery box in steps shown in the preceding figure, but in the reverse order.

When closing the battery box cover, prevent the connector cable from being pinched.



Improper use of the battery may result in liquid leakage which corrodes the components or leads to battery explosion. Observe the following precautions during use:



- Insert the battery with polarity (+/-) placed correctly.
- Leaving an idled or retired battery inside the device may lead to electrolyte leakage. The electrolyte inside the battery is highly corrosive, not only corroding surrounding components but also incurring the risk of short circuit. Replace the battery periodically (recommended interval: Every 2 years).
- Do not disassemble the battery because the internal electrolyte may spread out and result in personal injury.
- Do not throw a battery into the fire. Failure to comply may result in an explosion.
- Do not short-circuit the battery or strip off the battery tube. Prevent terminals (+)
  and (-) of the battery from coming into contact with the metal. Contact with the
  metal will result in a large current, not only weakening the battery power, but also
  incurring the risk of explosion due to severe heating.
- This battery is not rechargeable.
- Dispose of the retired battery according to local regulations.

#### Selecting the battery model

Select an appropriate battery according to the following table.

motor

60

Rated Values Battery Minimum Maximum Condition Item Typical **Specifications** Value Value Value External battery In standby state<sup>[2]</sup> 3.2 3.6 5 voltage (V) Circuit fault In standby state 2.6 voltage (V) Battery alarm Output: 3.6 V, 2.85 3 3.15 voltage (V) 2500 mAh Recommended In normal 2 operation<sup>[1]</sup> manufacturer Current and model: In standby state, consumed by the 10 Shenzhen shaft at standstill circuit (uA) Jieshun. In standby state. LS14500 80 shaft rotating Ambient 0 40 temperature (°C) Same as the

Table 3–25 Description of the absolute encoder battery

The preceding values are obtained under an ambient temperature of 20°C.

-20

#### Note

Storage

temperature (°C)

- [1] During normal operation, the absolute encoder supports one-turn or multi-turn data counting and transceiving. Power on the servo drive after connecting the absolute encoder properly. The encoder starts data transceiving after a short delay of about 5s upon power-on. The motor speed must be lower than or equal to 10 RPM during transition from the standby state to the nomral operation state (upon power-on). Otherwise, Er.740 (Encoder fault) may occur. In this case, you need to power off and on the servo drive again.
- [2] The "standby state" means the encoder counts the multi-turn data by using the power from the external battery when the servo drive power supply is not switched on. In this case, data transceiving stops.

## Design life of the battery

The following calculation only covers the current consumed by the encoder.

Assume that the drive works normally for T1 in a day, the motor rotates for T2 after the drive is powered off, and the motor stops rotating for T3 after power-off [unit: hour (H)].

For instance:

 Item
 Schedule 1
 Schedule 2

 Working Days in Different Operating Conditions in 1 Year
 313
 52

 T1 (h)
 8
 0

 T2 (h)
 0.1
 0

Table 3–26 Design life of the absolute encoder battery

Capacity consumed in 1 year =  $(8 \text{ h x 2 uA} + 0.1 \text{ h x } 80 \text{ uA} + 15.9 \text{ h x } 10 \text{ uA}) \text{ x } 313 + (0 \text{ h x 2 uA} + 0 \text{ h x } 80 \text{ uA} + 24 \text{ h x } 10 \text{ uA}) \text{ x } 52 \approx 70 \text{ mAH}$ 

15.9

24

Design life = Battery capacity/Capacity consumed in 1 year = 2600 mAH/70 mAH = 37.1 years

#### 3.7.2 Absolute Encoder Cable Connection

T3 (h)

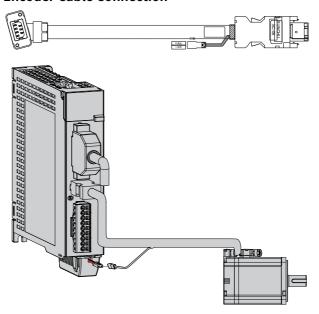



Figure 3-30 Wiring example of absolute encoder signals [1]

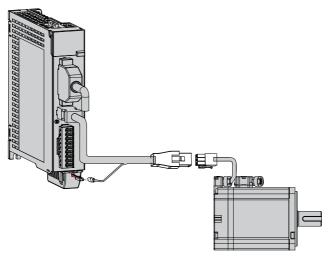



Figure 3-31 Wiring example of absolute encoder signals [1]

- [1] The preceding figure shows the wiring diagram of the absolute encoder cable, which is similar to that of the incremental encoder (without a battery box). The cable for the incremental encoder needs to be purchased separately.
- The encoder cable color is subject to the color of the actual product. Cable colors mentioned in this guide all refer to Inovance cables.

#### Lead wires of the battery box:

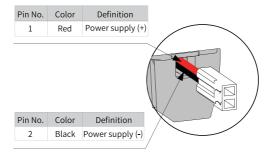



Figure 3-32 Description of the lead wire color of the battery box

- Store the battery in environments compliant with the required temperature range and ensure reliable contact and sufficient battery power. Failure to comply may result in encoder data loss.
- Model of the battery box (battery included): S6-C4

Table 3–27 Terminal-type motor encoder cable connector

| Applicable Motor              | Outline Drawing of the Connector |                                                   | Terminal Pin Layout |             |        |                  |
|-------------------------------|----------------------------------|---------------------------------------------------|---------------------|-------------|--------|------------------|
| Flange Size [1]               | Outin                            | le Drawing of the Connector                       | Pin No.             | Signal Name | Color  | Туре             |
|                               |                                  |                                                   | 1                   | +5V         | Red    | Twisted pair     |
|                               |                                  |                                                   | 2                   | GND         | Orange | i wisteu paii    |
|                               |                                  | 5 6                                               | 5                   | PS+         | Blue   | To describe a la |
|                               | Servo                            | 6-pin male (The joint face is on the right side.) | 6                   | PS-         | Purple | Twisted pair     |
| Terminal-type<br>motor:<br>40 | drive side                       |                                                   | Enclosure           | PE          | -      | -                |
| 60                            | Motor<br>side                    |                                                   | 1                   | PS+         | Blue   | Twisted pair     |
| 80                            |                                  |                                                   | 2                   | PS-         | Purple |                  |
|                               |                                  |                                                   | 3                   | DC+         | Brown  | Twisted pair     |
|                               |                                  |                                                   | 4                   | DC-         | Black  | i wisteu paii    |
|                               |                                  |                                                   | 5                   | +5V         | Red    | Twisted pair     |
|                               |                                  |                                                   | 6                   | GND         | Orange | i wisteu paii    |
|                               |                                  | 7-pin connector                                   | 7                   | PE          | -      | -                |

### Note

[1] The flange size refers to the width of the mounting flange.

Table 3–28 Lead wire-type motor encoder cable connector (9-pin connector)

| Applicable Motor | Applicable Motor Flange Size [1] Outline Drawing of the Connector |                                                   |                                         |         | Terminal I     | Pin Layout       |                 |
|------------------|-------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|---------|----------------|------------------|-----------------|
|                  |                                                                   |                                                   |                                         | Pin No. | Signal<br>Name | Color            | Туре            |
|                  |                                                                   |                                                   |                                         | 1       | +5V            | Red              | Twisted         |
|                  |                                                                   |                                                   |                                         | 2       | GND            | Orange           | pair            |
|                  |                                                                   |                                                   | 5 6                                     | 5       | PS+            | Blue             | Twisted         |
|                  |                                                                   | Servo                                             |                                         | 6       | PS-            | Purple           | pair            |
| Lead wire-type   | Connector of the                                                  | 6-pin male (The joint face is on the right side.) | Enclo<br>sure                           | PE      | -              | -                |                 |
| 40<br>60         | 40 Connected to CN2 of the servo drive                            |                                                   |                                         | 1       | Battery<br>(+) | Blue             |                 |
| 80               |                                                                   |                                                   | Viewed from                             | 4       | Battery<br>(-) | Blue-<br>black   | Twisted<br>pair |
|                  | Mo                                                                | Motor                                             | Motor Viewed from this side             | 3       | PS+            | Yellow           | pa              |
|                  |                                                                   | Side                                              | 9-pin connector Recommendation: Plastic | 6       | PS-            | Yellow-<br>black |                 |
|                  |                                                                   |                                                   | housing: AMP 172161-1;                  | 9       | +5V            | Red              |                 |
|                  |                                                                   |                                                   | Terminal: AMP 770835-1                  | 8       | GND            | Black            | -               |
|                  |                                                                   |                                                   |                                         | 7       | Shield         | -                |                 |

[1] The flange size refers to the width of the mounting flange.

**Applicable** Terminal Pin Layout Motor Outline Drawing of the Connector Signal Flange Size Pin No. Color Type Name +5V 1 Red Twisted 2 GND Orange pair 6 PS+ Blue Twisted PS-Purple pair 3 Servo drive 4 side 1 2 PΕ Enclosure Connector of the 6-pin male (The joint face 100 is on the right side.) 130 Connected to CN2 of the PS+ Yellow 180 servo drive Twisted Yellow-В pair PSblack Ε Battery (+) Blue Motor Side F Battery (-) Blue-black G +5V Red

Table 3–29 Absolute encoder cable connector (MIL-DTL-5015 series 3108E20-29S aviation connector)

## Note

[1] The flange size refers to the width of the mounting flange.

# 3.8 Connecting the Control Signal (CN1)

Observe the requirements in standard EN 60204-1 during connecting control circuit cables.

Н

J

GND

Shield

Black

# 3.8.1 Wiring of I/O Signal Cables

## I/O signal cable selection

It is recommended to use shielded signal cables to prevent I/O signal circuit from being disturbed by external noise. Use separate shielded cables for different analog signals. It is recommended to use shielded twisted pairs for digital signals.



Figure 3-33 Diagram of shielded twisted pairs

#### I/O signal layout

I/O signals include DI/DO signals and relay output signals.

Observe the following requirement during control circuit wiring:

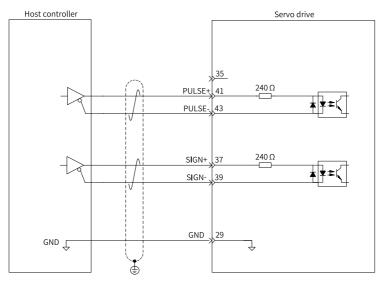
Route the control circuit cables and main circuit cables or other power cables through different routes with a distance of at least 30 cm. Failure to comply may result in disturbed I/O signals.

## 3.8.2 Position Reference Input Signals

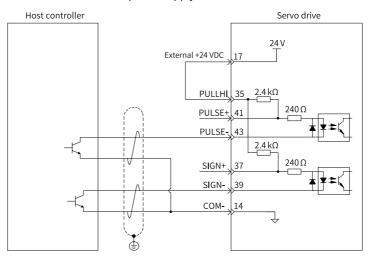
For descriptions of position reference input signals, see "Table 3–7" on page 80.

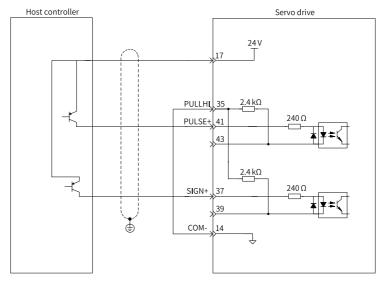
The reference pulses and signs on the host controller side can be outputted through the differential drive or open-collector. The following table lists the maximum input frequency and minimum pulse width.

| Pulse Mode              |                | Maximum Frequency (pps) | Minimum Pulse<br>Width (us) |
|-------------------------|----------------|-------------------------|-----------------------------|
| Lawanaad                | Differential   | 200 k                   | 2.5                         |
| Low-speed               | Open-collector | 200 k                   | 2.5                         |
| High-speed differential |                | 4 M                     | 0.125                       |

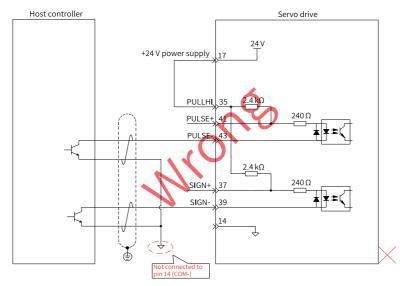

Table 3–30 Relation between pulse input frequency and pulse width

## Note

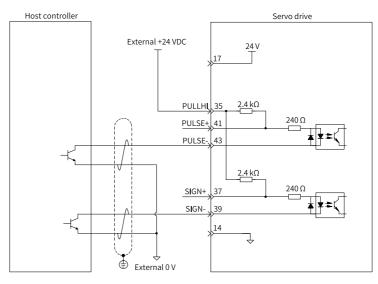

- You can either use high-speed pulses or low-speed pulses, but not both of them together.
- If the output pulse width of the host controller is smaller than the minimum pulse width, a pulse receiving error will occur on the drive.
- The symbol  $\sqrt{\phantom{a}}$  represents shielded twisted pairs.

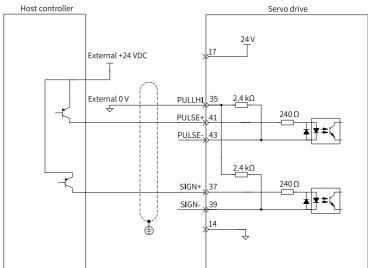

### Low-speed pulse reference input

Differential mode

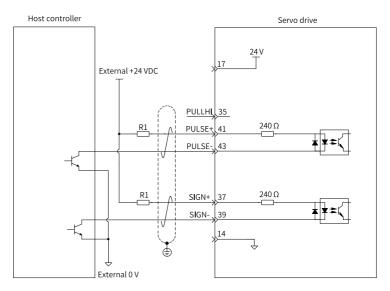


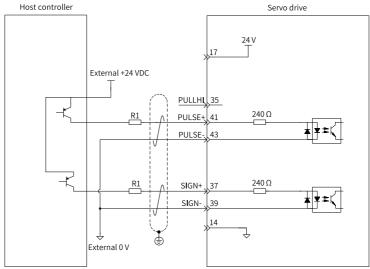

- Open-collector mode
  - ① For use of the internal 24 V power supply of the servo drive:




Wrong: Pin 14 (COM-) is not connected and a closed-loop circuit cannot be formed.





- ② For use of an external power supply:
- Scheme 1: Using the built-in resistor (recommended)

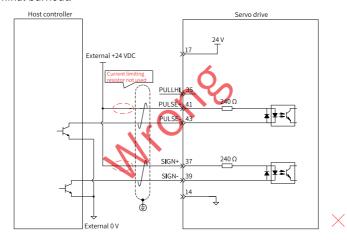




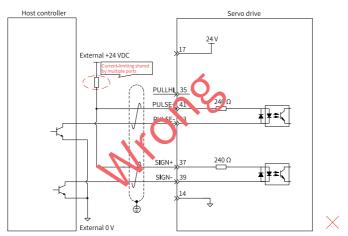
■ Scheme 2: Using the external resistor






Select resistor R1 based on the following formula.

$$\frac{V_{CC} - 1.5}{R \ 1 + 240} = 10 \text{ mA}$$


Table 3-31 Recommended resistance of R1

| V <sub>CC</sub> Voltage | Resistance of R1 | Power of R1 |
|-------------------------|------------------|-------------|
| 24 V                    | 2.4 kΩ           | 0.5 W       |
| 12 V                    | 1.5 kΩ           | 0.5 W       |

- The following figures show examples of improper wiring.
- Improper wiring 1: The current limiting resistor is not connected, resulting in terminal burnout.



■ Wrong wiring 2: Multiple terminals share the same current limiting resistor, resulting in pulse receiving error.



■ Wrong wiring 3: The SIGN port is not connected, preventing these two ports from receiving pulses.

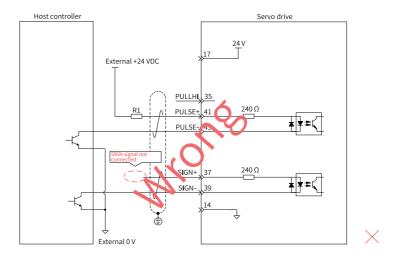
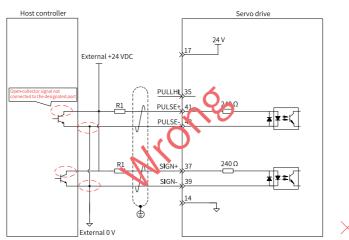
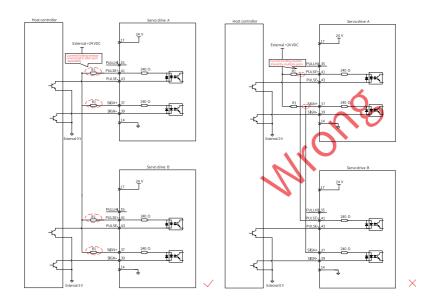
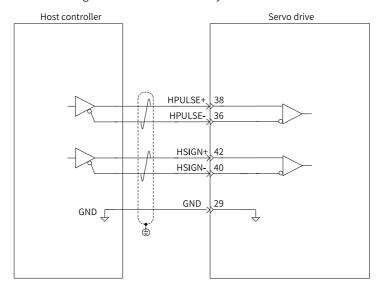





Figure 3-34

 Wrong wiring 4: Terminals are connected incorrectly, resulting in terminal burnout.




■ Wrong wiring 5: Multiple terminals share the same current limiting resistor, resulting in pulse receiving error.



# High-speed pulse reference input

High-speed reference pulses and signs on the host controller side can be outputted to the servo drive through the differential drive only.

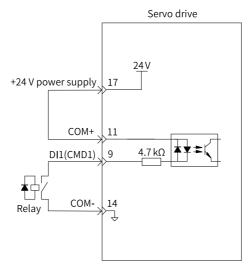




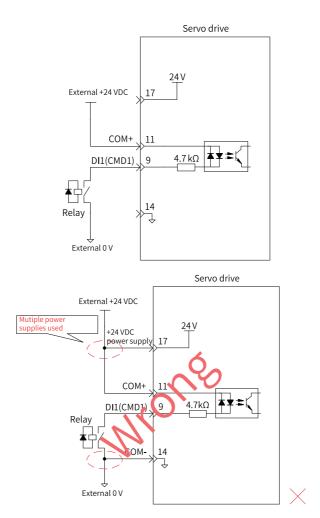
The differential input must be 5 V. Otherwise, unstable pulse input will occur on the servo drive, resulting in the following situations:

- Pulse loss during pulse input
- Reference inverted during reference direction input

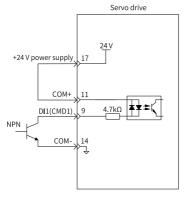
Connect 5V GND of the host controller to the GND of the servo drive to reduce noise interference.

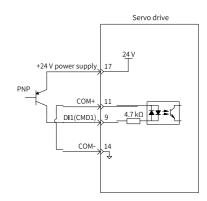

## 3.8.3 DI/DO Signals

For description of DI/DO signals, see "Table 3-8" on page 80.

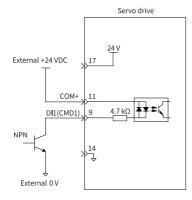

#### DI circuit

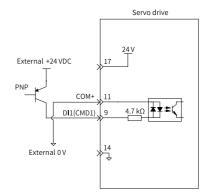
The circuits for DI1 to DI9 are the same. The following description takes DI1 circuit as an example.


- The host controller provides relay output.
  - For use of an internal 24 V power supply of the servo drive




■ For use of an external power supply





- The host controller provides open-collector output.
  - For use of an internal 24 V power supply of the servo drive

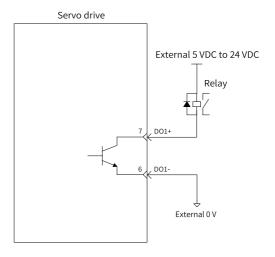




■ For use of an external power supply

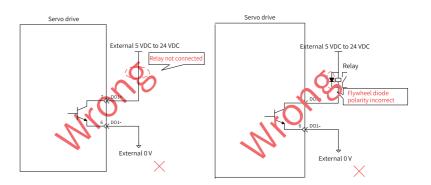




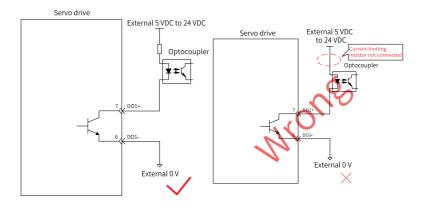

## Note

PNP and NPN input cannot be applied in the same circuit.

#### **DO** circuit


The circuits for DO1 to DO5 are the same. The following description takes DO1 circuit as an example.

• The host controller provides relay input.




# Note

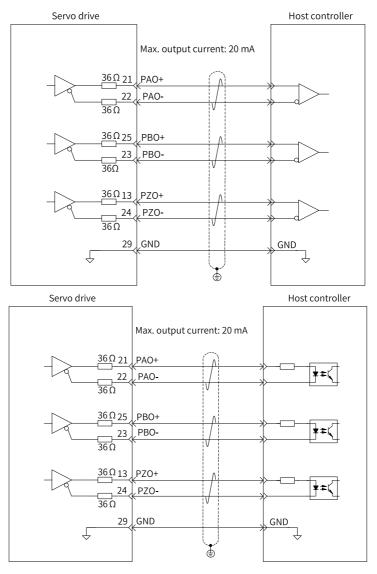
When the host controller provides relay input, a flywheel diode must be installed. Otherwise, the DO terminals may be damaged.



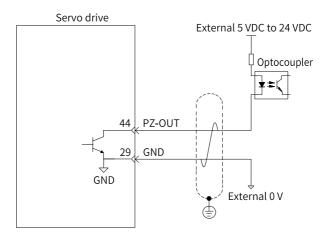
• The host controller provides optocoupler input.



### Note


The maximum permissible voltage and current capacity of the optocoupler output circuit inside the servo drive are as follows:

- Maximum voltage: 30 VDC
- Maximum current: DC 50 mA


### 3.8.4 Encoder Frequency-Division Output Signals

For details on encoder frequency-division output signals, see "Table 3-9" on page 81

The encoder frequency-division output circuit outputs differential signals through the differential drive. Generally, this circuit serves to provide feedback signals to the host controller in a position control system. Use a differential or optocoupler receiving circuit on the host controller side to receive feedback signals. The maximum output current is 20 mA.



The encoder phase Z frequency-division output circuit supports open-collector signal output. Generally, this circuit serves to provide feedback signals to the host controller in a position control system. Use an optocoupler circuit, relay circuit, or bus receiver circuit on the host controller side to receive feedback signals.





To reduce noise interference, use shielded twisted pairs to connect the 5V GND of the host controller to the GND of the servo drive.

The maximum permissible voltage and current capacity of the optocoupler output circuit inside the servo drive are as follows:

Maximum voltage: 30 VDCMaximum current: DC 50 mA

# 3.8.5 Wiring of the Brake

The brake is used to prevent the motor shaft from moving and keep the motor and the motion part in locked positions when the servo drive is in the non-operating status.

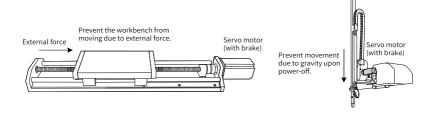



Figure 3-35 Application of the brake



- Use the built-in brake for position-lock purpose only. Do not use this brake for any other purposes (such as braking) other than position-lock in the stop state.
- The brake coil has no polarity.
- Switch off the S-ON signal after the servo motor stops.
- When the servo motor with brake runs, the brake may generate a click sound, which does not affect its function.
- When brake coils are energized (the brake is released), magnetic flux leakage may occur on the shaft end. Pay special attention when using magnetic sensors around the servo motor.

The connection of the brake input signal is polarity-insensitive. Users need to prepare a 24 V power supply. The following figure shows the standard wiring of the brake signal (BK) and the brake power supply.

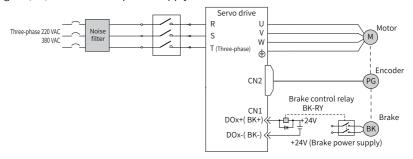



Figure 3-36 Wiring of the brake

#### Pay attention to the following precautions during wiring:

When deciding the length of the motor brake cable, take the voltage drop caused by cable resistance into consideration. The input voltage must be at least 21.6 V to enable the brake to work properly. The following table lists brake specifications of Inovance MS1 series servo motors.

Table 3-32 Brake specifications

| Motor Model                | Holding<br>Torque<br>(N·m) | Supply<br>Voltage<br>(VDC)<br>±10% | Coil Resistance<br>(Ω)±7% | Exciting<br>Current<br>(A) | Release Time<br>(ms) | Apply Time<br>(ms) | Backlash<br>(°) |
|----------------------------|----------------------------|------------------------------------|---------------------------|----------------------------|----------------------|--------------------|-----------------|
| MS1H1-05B/10B              | 0.32                       |                                    | 94.4                      | 0.25                       | ≤ 20                 | ≤ 40               | ≤ 1.5           |
| MS1H1-20B/40B<br>MS1H4-40B | 1.5                        |                                    | 75.79                     | 0.32                       | ≤ 20                 | ≤ 60               | ≤ 1.5           |
| MS1H1-75B/<br>MS1H4-75B    | 3.2                        |                                    | 57.6                      | 0.42                       | ≤ 40                 | ≤ 60               | ≤1              |
| MS1H2-10C/15C/<br>20C/25C  | 8                          | 24                                 | 25                        | 0.96                       | ≤ 30                 | ≤ 85               | ≤ 0.5           |
| MS1H2-30C/40C/<br>50C      | 16                         |                                    | 21.3                      | 1.13                       | ≤ 60                 | ≤ 100              | ≤ 0.5           |
| MS1H3-85B/13C/<br>18C      | 12                         |                                    | 29.7                      | 0.81                       | ≤ 60                 | ≤ 120              | ≤ 0.5           |
| MS1H3-29C/44C/<br>55C/75C  | 50                         |                                    | 14.4                      | 1.67                       | ≤ 100                | ≤ 200              | ≤ 0.5           |

# Note

- The brake cannot share the same power supply with other electrical devices. This is to prevent malfunction of the brake due to voltage or current drop caused by other working devices.
- It is recommended to use cables with a cross-sectional area of 0.5 mm<sup>2</sup> and above.

# 3.9 Connecting the Communication Signals (CN3/CN4)

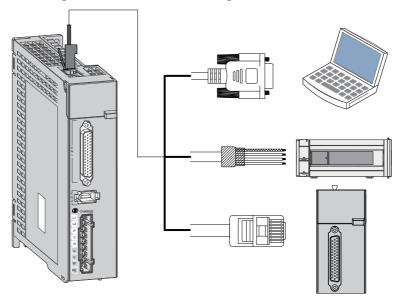



Figure 3-37 Wiring of communication signals

CN3 and CN4 are identical communication signal terminals connected in parallel internally.

CN3 and CN4 on the servo drive are used for communication between the servo drive and the PC, PLC, and other servo drives. For pin assignment of CN3/CN4, see "3.4.4 Description of Communication Terminals (CN3/CN4)" on page 81.

#### 3.9.1 CAN Communication Connection

#### CAN communication with PLC

The following figure shows the cable connecting the servo drive and PLC during CAN communication.



Figure 3-38 Outline drawing of cable used for CAN communication between the servo drive and PLC

Use a three-conductor shielded cable to connect the CAN bus, with the three conductors connected to CANH, CANL, and CGND (CGND represents isolated RS485

circuit) respectively. Connect CANH and CANL with two conductors twisted together. Connect CGND to the CAN reference ground. Connect the shield to the device ground. Connect a 120  $\Omega$  termination resistor on each end of the bus to prevent CAN signal reflection.

Table 3–33 Pin connection relation of the cable used for CAN communication between the servo drive and PLC

| RJ45 on the Servo Drive Side (A) |                |           | PLC Side (B)          |             |           |
|----------------------------------|----------------|-----------|-----------------------|-------------|-----------|
| Communication<br>Type            | Signal<br>Name | Pin No.   | Communication<br>Type | Signal Name | Pin No.   |
|                                  | CANH           | 1         |                       | CANH        | 1         |
| CAN                              | CANL 2 CAN     |           | CANL                  | 2           |           |
|                                  | CGND           | 3         |                       | CGND        | 3         |
| -                                | PE (shield)    | Enclosure | -                     | PE (shield) | Enclosure |

#### Multi-drive CAN communication

The following figure shows the cable used for parallel connection of multiple servo drives during CAN communication.

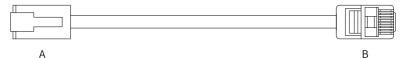



Figure 3-39 Outline drawing of multi-drive communication cable

Table 3–34 Pin connection relation of multi-drive communication cable (pins in CAN group used only)

| RJ45 on the Servo Drive Side (A) |                |           | RJ45 on the Servo Drive Side (B) |             |           |
|----------------------------------|----------------|-----------|----------------------------------|-------------|-----------|
| Communication<br>Type            | Signal<br>Name | Pin No.   | Communication<br>Type            | Signal Name | Pin No.   |
|                                  | CANH           | 1         |                                  | CANH        | 1         |
| CAN                              | CANL           | 2         | CAN                              | CANL        | 2         |
|                                  | CGND           | 3         |                                  | CGND        | 3         |
| -                                | PE (shield)    | Enclosure | =                                | PE (shield) | Enclosure |

The following figure shows the CAN bus connection in daisy chain mode. It is recommended to use shielded twisted pairs for CAN bus connection. Connect CANH and CANL with twisted pairs. Connect a 120  $\Omega$  termination resistor on each end of the bus to prevent signal reflection. Connect the reference grounds of CAN signals of all the nodes together. A maximum of 64 nodes can be connected.

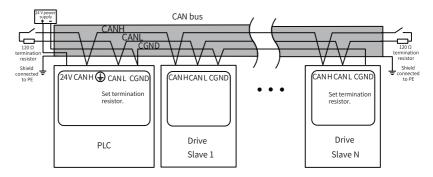



Figure 3-40 CAN bus topology



Do not connect the CGND terminal of the host controller to the GND terminal of the servo drive. Failure to comply will damage the machine.

The transmission distance of the CAN bus is directly related to the baud rate and communication cables. The following table describes the relationship between the maximum bus length and the baud rate.

| No. | Transmission | Baud Rate | Number of | Cross-sectional       |
|-----|--------------|-----------|-----------|-----------------------|
| NO. | Distance     | Baud Rate | Nodes     | Area                  |
| 1   | 25 m         | 1 Mbps    | 64        | 0.205 mm <sup>2</sup> |
| 2   | 95 m         | 500 kbps  | 64        | 0.34 mm <sup>2</sup>  |
| 3   | 560 m        | 100 kbps  | 64        | 0.5 mm <sup>2</sup>   |
| 4   | 1100 m       | 50 kbps   | 64        | 0.75 mm <sup>2</sup>  |

# 3.9.2 Wiring of RS485 Communication

#### RS485 communication with PLC

The following figure shows the cable used for RS485 communication between the servo drive and PLC.



Figure 3-41 Outline drawing of the cable used for RS485 communication between the servo drive and PLC

Use a three-conductor shielded cable to connect the RS485 bus, with the three conductors connected to 485+, 485-, and GND (GND represents non-isolated RS485 circuit) respectively. Connect 485+ and 485- with two conductors twisted together and connect the remaining conductor to RS485 reference ground. Connect the shield to the device ground PE. Connect a 120  $\Omega$  termination resistor on each end of the bus to prevent RS485 signal reflection.

Table 3–35 Pin connection relation of the cable used for RS485 communication between the servo drive and PLC

| RJ45 on the Servo Drive Side (A) |             |           |                        | PLC Side (B) |           |
|----------------------------------|-------------|-----------|------------------------|--------------|-----------|
| Communica<br>tion Type           | Signal Name | Pin No.   | Communica<br>tion Type | Signal Name  | Pin No.   |
|                                  | 485+        | 4         |                        | 485+         | 4         |
| RS485                            | 485-        | 5         | RS485                  | 485-         | 5         |
|                                  | GND         | 8         |                        | GND          | 8         |
| -                                | PE (shield) | Enclosure | -                      | PE (shield)  | Enclosure |

### Wiring of multi-drive RS485 communication

The following figure shows the cable used for multi-drive RS485 communication.



Figure 3-42 Outline drawing of the cable used for multi-drive RS485 communication

Table 3–36 Pin connection relation of the cable used for multi-drive RS485 communication (pins in 485 group used only)

| RJ45 on                | the Servo Drive | Side (A)  | RJ45 on                | the Servo Drive | Side (B)  |
|------------------------|-----------------|-----------|------------------------|-----------------|-----------|
| Communica<br>tion Type | Signal Name     | Pin No.   | Communica<br>tion Type | Signal Name     | Pin No.   |
|                        | 485+            | 4         |                        | 485+            | 4         |
| RS485                  | 485-            | 5         | RS485                  | 485-            | 5         |
|                        | GND             | 8         | 8                      |                 | 8         |
| -                      | PE (shield)     | Enclosure | -                      | PE (shield)     | Enclosure |

In case of a large number of nodes, connect the RS485 bus with the daisy chain mode. Connect the reference grounds of RS485 signals of all the nodes (up to 128 nodes) together.

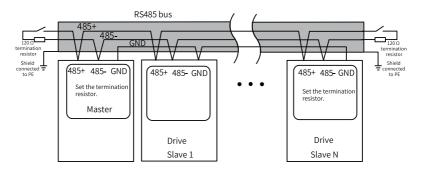



Figure 3-43 RS485 bus topology



Do not connect the GND terminal ( $\stackrel{(}{\overline{\bigcirc}}$ ) of the host controller to the CGND terminal of the servo drive. Failure to comply will damage the machine.

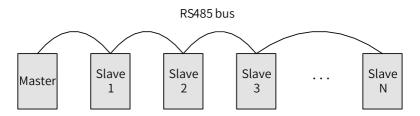



Figure 3-44 Daisy chain mode

The following table lists the maximum number of nodes and transmission distances supported by the standard RS485 circuit at different baud rates.

| Table 3–37 | Transmission c | listance and | l number o | t nodes |
|------------|----------------|--------------|------------|---------|
|------------|----------------|--------------|------------|---------|

| No  | No. Double |          | Number of | Cable          |
|-----|------------|----------|-----------|----------------|
| No. | Baud Rate  | Distance | Nodes     | Specifications |
| 1   | 115.2 kbps | 100 m    | 128       | AWG26          |
| 2   | 19.2 kbps  | 1000 m   | 128       | AWG26          |

## 3.9.3 Wiring of RS232 Communication with PC

You can connect the servo drive and the PC using the PC communication cable during RS232 communication. It is recommended to use RS232 communication interface. The outline drawing of the PC communication cable is shown in the following figure.



Figure 3-45 Outline drawing of the PC communication cable

Table 3–38 Pin connection relation between the servo drive and PC communication cable

| RJ45 on the Ser | vo Drive Side (A) | DB9 on the  | PC Side (B) |
|-----------------|-------------------|-------------|-------------|
| Signal Name     | Pin No.           | Signal Name | Pin No.     |
| RS232-TXD       | 6                 | PC-RXD      | 2           |
| RS232-RXD       | 7                 | PC-TXD      | 3           |
| GND             | 8                 | GND         | 5           |
| PE (shield)     | Enclosure         | PE (shield) | Enclosure   |

Pin assignment of DB9 terminal on the PC side is shown in the following table.

Table 3–39 Pin assignment of DB9 terminal on the PC side ("B" in the preceding figure)

| Pin No.   | Assignment | Description         | Terminal Pin Layout                                                                 |
|-----------|------------|---------------------|-------------------------------------------------------------------------------------|
| 2         | PC-RXD     | PC receiving end    |                                                                                     |
| 3         | PC-TXD     | PC transmitting end |                                                                                     |
| 5         | GND        | Ground              |                                                                                     |
| Enclosure | PE         | Shield              | 3 ° 8 ° 4 ° 9 ° 5 5 ° 9 ° 5 ° 9 ° 5 ° 9 ° 6 ° 7 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 |

If the host controller supports USB interface only, use the serial-to-USB cable.

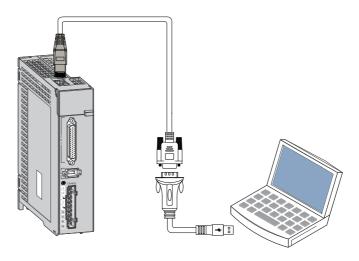



Figure 3-46 Outline drawing of the PC communication cable

Recommendations: Manufacture: Z-TEK Model: ZE551A, equipped with a 0.8 m USB extension cable Chip model: FT232

# 3.10 Wiring and Setting of the Regenerative Resistor

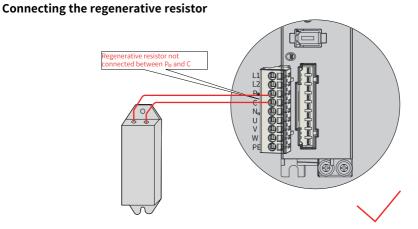



Figure 3-47 Wiring of external regenerative resistor

For cables used for terminals  $P \oplus$  and C, see "3.5.3 Recommended Cable Specifications and Models" on page 84.



Observe the following precautions when connecting the external regenerative resistor:

- Remove the jumper between terminals P⊕ and D before using the external regenerative resistor. Failure to comply will result in overcurrent and damage the braking transistor.
- Do not connect the external regenerative resistor to the positive or negative pole
  of the bus directly. Failure to comply will damage the servo drive and result in a
  fire.
- Select a resistor with resistance higher than or equal to the minimum permissible value. Failure to comply will result in Er.201 (Overcurrent) or damage the servo drive.
- Make sure parameters H02-25 (Regenerative resistor setting), H02-26 (Power of external regenerative resistor) and H02-27 (Resistance of external regenerative resistor) are set properly before operating the servo drive.
- Install the external regenerative resistor on an incombustible object such as a metal.

#### Selecting the regenerative resistor Start Determine the Determine the reciprocating cycle reciprocating based on actual working conditions. cycle T (s). Determine the Determine the motor speed based motor speed on actual working conditions or V (RPM). read the motor speed in the software tool. Determine the See the Chapter "Adjustment" in SV660P Series Servo Drive Function Guide for load to motor inertia ratio (N) details on inertia auto-tuning. $E_1 = (N+1) E_0 = (N+1) \times \frac{J \times V^2}{182}$ Calculate the J is the moment of inertia of the motor braking energy shaft without load. E, (J). V is the motor speed. N is the load to motor inertia ratio. Determine the energy absorbed Determine the max, braking energy that can be absorbed by the capacitor based on section "Parameter Settings" by the capacitor E, (J). in SV660P Series Servo Drive Commissioning No Yes $E_1(J) > Ec(J)$ ? The regenerative The regenerative resistor is not resistor is needed. needed. Calculate the power $2\times(E_1-E_C)$ of the regenerative resistor needed (P,) No Yes $P_b > P_a$ ? Use the built-in Use an external regenerative regenerative resisotr. resistor. Derate the external regenerative resistor by 70% (P,) End

Figure 3-48 Flowchart for selecting the regenerative resistor

#### Note

- Take the process in which motor decelerates from 3000 RPM to 0 RPM as an example, suppose the load inertia is N times the motor inertia, then the braking energy is (N+1) x E<sub>0</sub> when the motor decelerates from 3000 RPM to 0 RPM, and the energy consumed by the regenerative resistor is (N+1) x E<sub>0</sub> E<sub>C</sub> (E<sub>C</sub> represents the energy absorbed by the capacitor). Suppose the reciprocating cycle is T, then the power of the regenerative resistor needed is 2 x [(N + 1) x E<sub>0</sub> E<sub>C</sub>]/T. For values of E<sub>0</sub> and E<sub>C</sub>, see section "Parameter Settings" in SV660P Series Servo Drive Commissioning Guide.
- Determine whether to use the regenerative resistor according to the preceding figure and select a built-in or an external one as needed. Then, set H02-25 accordingly.
- The resistor with aluminum casing is recommended.

#### ☆Related parameters

| Para. No. | Name                       | Value Range                                                                                                                                   | Description                                                                                        | Setting<br>Condition | Effective<br>Time | Default |
|-----------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|-------------------|---------|
| H02-25    | Regenerative resistor type | 0: Built-in 1: External, natural cooling 2: External, forced air cooling 3: No resistor needed, braking energy absorbed by the capacitor only | Defines the regenerative resistor type and the mode of absorbing and releasing the braking energy. | At stop              | Immediately       | 0       |

Take the H1 series 750 W model as an example. Suppose the reciprocating cycle (T) is 2s, the maximum speed is 3000 RPM, and the load inertia is 4 times the motor inertia, the required power of the regenerative resistor is as follows:

$$P_b = \frac{2 \times [(N+1) \times E_0 - E_C]}{T} = \frac{2 \times [(4+1) \times 6.4 - 26]}{2} = 6 W$$

The calculated result is smaller than the processing capacity ( $P_a = 25 \text{ W}$ ) of the built-in regenerative resistor, so a built-in regenerative resistor is sufficient.

If the inertia ratio in the preceding example is changed to 10 times the motor inertia, and other conditions remain the same, the required regenerative resistor power will be as follows:

$$P_b = \frac{2 \times [(N+1) \times E_0 - E_C]}{T} = \frac{2 \times [(10+1) \times 6.4 - 26]}{2} = 44.4W$$

The calculated value is larger than the capacity (Pa = 25 W) of the built-in regenerative resistor, so an external regenerative resistor is required. The recommended power of the external regenerative resistor is P<sub>b</sub>/(1–70%) = 148 W.

### Setting the regenerative resistor

Using an external regenerative resistor When  $P_b > P_a$ , an external regenerative resistor is needed. Set H02-25 to 1 or 2 based on the cooling mode of the regenerative resistor.

Use the external regenerative resistor with 70% derated, that is,  $P_r = P_b/(1-70\%)$ , and ensure the resistance of the regenerative resistor is higher than the minimum permissible resistance of the servo drive. Remove the jumper bar between terminals  $P\oplus$  and D, and connect the external regenerative resistor between terminals  $P\oplus$  and C.

For the wiring diagram and lead wire specifications of the external regenerative resistor, see "Connecting the regenerative resistor" on page 132. Set H02-25 to 1 or 2 based on the cooling mode of the regenerative resistor, and set the following parameters properly.

#### ☆Related parameter

| Para.<br>No. | Name                                                                | Value<br>Range     | Unit | Description                                                                                                                                                                                                                                                                                          | Setting<br>Condition | Effective Time | Default            |
|--------------|---------------------------------------------------------------------|--------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|--------------------|
| H02-21       | Minimum<br>permissible<br>resistance of<br>regenerative<br>resistor | Model<br>dependent | -    | Defines the minimum permissible resistance of the external regenerative resistor.                                                                                                                                                                                                                    | At display           | -              | Model<br>dependent |
| H02-26       | Power of<br>external<br>regenerative<br>resistor                    | 1–65535            | W    | Defines the power of the external regenerative resistor used.  Note: The power of the external regenerative resistor cannot be lower than the calculated result.                                                                                                                                     | At stop              | Immediately    | Model<br>dependent |
| H02-27       | Resistance of<br>external<br>regenerative<br>resistor               | 1–1000             | Ω    | Defines the resistance of the external regenerative resistor used.  Note: The resistance of the external regenerative resistor (H02-27) cannot be lower than the permissible minimum resistance defined by H02-21. Otherwise, Er.922 (Resistance of the regenerative resistor too small) will occur. | At stop              | Immediately    | Model<br>dependent |



- Set the power and resistance of the external regenerative resistor in H02-26 and H02-27.
- Ensure the resistance of the external regenerative resistor is higher than or equal to the permissible minimum resistance.
- When the regenerative resistor is used at its rated power rather than the
  processing power (average value) in environments within the specified
  temperature range, the temperature of the resistor will rise to above 120°C under
  continuous braking. To ensure safety, lower down the resistor temperature with
  forced air cooling, or use a resistor equipped with a thermal switch. For the load
  characteristics of the regenerative resistor, consult with the manufacturer.

Set the heat dissipation coefficient based on the heat dissipation condition of the external regenerative resistor.

#### ☆Related parameter

| Para.<br>No. | Name                                        | Value<br>Range | Unit | Description                                                                                                                                                                | Setting<br>Condition | Effective<br>Time | Default |
|--------------|---------------------------------------------|----------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|---------|
| H02-24       | Resistor heat<br>dissipation<br>coefficient | 10–100         | %    | When an external regenerative resistor is used, set H02-24 to a value not higher than 30% in case of natural cooling or not higher than 50% in case of forced air cooling. | At stop              | Immediately       | 30      |

### Note

Higher resistor heat dissipation coefficient indicates higher braking efficiency.

• Using the built-in regenerative resistor When  $P_b < P_a$  and  $E_1 > E_C$ , use the built-in regenerative resistor. In this case, set H02-25 to 0.

When using the built-in regenerative resistor, connect terminals  $P \oplus$  and D with a jumper bar.

- Regenerative resistor not needed
   When E<sub>1</sub> < E<sub>C</sub>, the regenerative resistor is not needed because the braking energy can be absorbed by the bus capacitor. In this case, set H02-25 to 3.
- External load torque applied, motor in generating state

When the motor direction of rotation is the same with the shaft direction of rotation, the motor outputs energy to the outside. In some applications where the motor direction of rotation is opposite to the shaft direction of rotation, the motor is in the generating state and feeds the electric energy back to the servo drive.

When the load is in the generating state continuously, it is recommended to adopt the common DC bus mode.

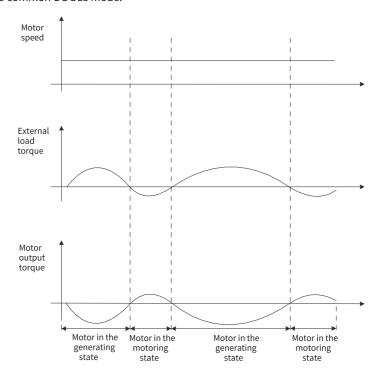



Figure 3-49 Example of the curve with external load torque

Take H1 series 750 W motors (rated torque: 2.39 N·m) as an example. When the external load torque is 60% of the rated torque and the motor speed reaches 1500 RPM, the power fed back to the servo drive is  $(60\% \times 2.39) \times (1500 \times 2 \pi/60) = 225$  W. As the regenerative resistor needs to be derated by 70%, the power of the external regenerative resistor is: 225/(1-70%) = 750 W, with resistance being 50  $\Omega$ .

### 4 Maintenance

#### 4.1 Routine Maintenance

Standard operating conditions:

Average annual ambient temperature: 30°C Average load rate: < 80% Daily operating time: < 20 h

#### 4.1.1 Routine Checklist

Check the following items during routine inspection.

Table 4-1 Routine checklist

| No. | Item                                                                                                       | Checked |
|-----|------------------------------------------------------------------------------------------------------------|---------|
| 1   | The ambient temperature and humidity are normal.  There is no dust or unwanted objects in the servo drive. |         |
| 2   | There is no abnormal vibration or noise.                                                                   |         |
| 3   | The voltage of the power supply is normal.                                                                 |         |
| 4   | There is no strange smell.                                                                                 |         |
| 5   | There are no fibers adhered to the air inlet.                                                              |         |
| 6   | There is no intrusion of unwanted object on the load end.                                                  |         |

## 4.1.2 Routine Cleaning List

Check the following items during routine cleaning.

Table 4–2 Routine cleaning list

| No. | Item                                                                   | Checked |
|-----|------------------------------------------------------------------------|---------|
| 1   | Clean the dust on the equipment surface, especially the metallic dust. |         |
| 2   | Keep the front end of the servo drive and the connectors clean.        |         |

## Note

- Cut off the power supply before cleaning. Clean the equipment with an air gun or a
  piece of dry cloth.
- Do not use the gasoline, diluent, alcohol, acidic or alkaline detergent during cleaning to prevent enclosure discoloration or damage.

### 4.2 Periodic Maintenance

#### 4.2.1 Periodic Checklist

Table 4-3 Periodic checklist

| No. | Item                                                               | Checked |
|-----|--------------------------------------------------------------------|---------|
| 1   | The screws used to fix the couplings between devices are in place. |         |
| 2   | There is no sign of overheating.                                   |         |
| 3   | Terminal blocks are in good condition without any sign of damage.  |         |
| 4   | The clamping units of terminal blocks are in place.                |         |

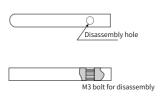
### 4.2.2 Periodic Maintenance List

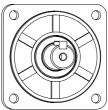
The electrical and electronic parts inside the servo drive may be mechanically worn out and degraded. To keep the servo drive and servo motor in good condition, perform parts replacement based on the replacement cycles listed in the following table. Contact Inovance or Inovance agent before replacement to double check whether the part needs to be replaced.

| Equipment   | Components                                 | Standard Replacement<br>Interval                                                                        | Remarks                                                          |
|-------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|             | Bus filter capacitor                       | About five years                                                                                        |                                                                  |
|             | Cooling fan                                | 2 to 3 years (10000 h to 30000 h)                                                                       |                                                                  |
|             | Aluminum electrolytic capacitor on the PCB | About five years                                                                                        |                                                                  |
| Servo drive | Pre-charge relay                           | 100,000 operations<br>(depending on the<br>operating conditions)                                        | The standard                                                     |
|             | Pre-charge resistor                        | 20,000 operations<br>(depending on the<br>operating conditions)                                         | replacement interval is<br>for reference only.<br>If any device/ |
|             | Bearing                                    | 3 to 5 years (20,000 h<br>to 30,000 h)                                                                  | component works improperly within the replacement interval,      |
|             | Oil seal                                   | 5000 h                                                                                                  | replace it immediately.                                          |
|             | Encoder                                    | 3 to 5 years (20,000 h<br>to 30,000 h)                                                                  |                                                                  |
| Motor       | Absolute encoder battery                   | Depends on the operating condition. See the operation instructions for the encoder battery for details. |                                                                  |

# 4.3 Parts Replacement

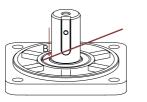
## 4.3.1 Disassembling the Motor Flat Key



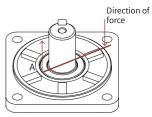


- Observe all the requirements presented in this chapter. Failure to comply may result in equipment fault or damage.
- Violent disassembly is not allowed. Take enough care during disassembly to prevent personal injury.

Standard MS1 series motors in flange sizes 60, 80, and 130 adopt C-type flat key that carries the disassembly hole. To disassemble the flat key, select a proper disassembly bolt (inner hexagon bolt recommended) based on the following table.

| Specifications and Dimensions |                               |                                                                |  |  |  |  |
|-------------------------------|-------------------------------|----------------------------------------------------------------|--|--|--|--|
| Motor Flange Size             | Dimensions of the Flat<br>Key | Specifications of the Disassembly<br>Bolt (Inner Hexagon Bolt) |  |  |  |  |
| Flange size 40                | Type-A flat<br>key—A3x3x14    | No disassembly hole                                            |  |  |  |  |
| Flange size 60                | Type-C flat<br>key—C5x5x16.5  | M3x10 and above                                                |  |  |  |  |
| Flange size 80                | Type-C flat<br>key—C6x6x25    | M3x15 and above                                                |  |  |  |  |
| Flange size 100               | Type-C flat<br>key—C8x7x35    | M3x20 and above                                                |  |  |  |  |
| Flange size 130               | Type-C flat<br>key—C8x7x35    | M3x20 and above                                                |  |  |  |  |
| Flange size 180               | Type-C flat<br>key—C10x8x64   | M3x20 and above                                                |  |  |  |  |


- Tool needed: an Allen wrench
- Disassembly procedure:
  - Select a proper disassembly bolt (inner hexagon bolt recommended) based on the motor model.
  - 2. Use an Allen wrench to screw down the bolt clockwise until A-A end of the flat key is completely detached from the keyway, as shown below.






# 4.3.2 Disassembling the Motor Oil Seal

- Tools needed: a pair of needle-nose pliers, a pair of slip-proof gloves, and a piece
  of cotton cloth
- Procedure:
  - 1. Put the cotton cloth onto the supporting point B to avoid the end cover from being scratched during disassembly.
  - 2. Secure the motor and use the needle-nose pliers to hold point A of the oil seal lip.
  - 3. Pry the oil seal out gradually against the supporting point B.



(Point B acts on the shaft extension stairs)



(Point A acts on the oil seal lip)

# 5 Appendix 1 Certifications and Standards Compliance

## 5.1 Compliance List

Table 5-1 Compliance list

| Certifications | Directives |            | Standards                |
|----------------|------------|------------|--------------------------|
|                | EMC        | 2014/30/EU | EN IEC 61800-3           |
| CE             | LVD        | 2014/35/EU | EN 61800-5-1<br>EN 60034 |
|                | RoHS       | 2011/65/EU | EN 50581                 |
|                |            |            | UL61800-5-1              |
| UL/cUL         |            |            | C22.2 No.274-17          |
| certification  |            | _          | UL 1004-6                |
|                |            |            | CSA C22.2 No. 100-14     |

#### Note

The drive complies with the latest version of directives and standards for CE and UL/cUL certifications.

#### 5.2 CE Certification



Figure 5-1 CE mark

- The CE mark indicates compliance with the Low Voltage Directive (LVD),
   Electromagnetic Compatibility (EMC), and Restriction of Hazardous Substances (RoHS) directives.
- The CE mark is required for engaging in commercial business (production, importation, and distribution) in Europe.
- The servo drive complies with LVD, EMC, and RoHS directives and carries the CE mark
- Machines and devices integrated with this drive must also comply with CE requirements for distribution in Europe.
- The integrator who integrates this drive into other products and attaches CE mark to the final assembly has the responsibility of ensuring compliance with CE certification.

### 5.2.1 Requirement for Compliance with EMC Directive

The SV660P series servo drive, which is applicable to the first environment and second environment, complies with EMC Directive 2014/30/EU and standard EN IEC 61800-3.

As required by EMC Directive 2014/30/EU and standard EN IEC 61800-3, install an EMC filter on the input side of the drive and use shielded cables on the output side. Ensure the filter is grounded properly and the shield of the output cable is grounded 360 degrees.



- When applied in the first environment, the drive may generate radio interference. In addition to the CE compliance requirements described in this chapter, take additional measures to prevent radio interference if necessary.
- The manufacturer of the system integrated with this drive is responsible for ensuring compliance with EMC directives and EN IEC 61800-3 based on the application environment of the system.

#### Introduction to EMC standards

Electromagnetic compatibility (EMC) describes the ability of electrical and electronic devices to work properly in the electromagnetic environment without introducing electromagnetic interferences that disturb the operation of other local devices or systems. In other words, EMC includes two aspects: 1) The electromagnetic interference generated by a device during normal operation cannot exceed a certain limit. 2) The device must have sufficient immunity to the electromagnetic interference in the environment.

EN IEC 61800-3 defines the following two types of environments.

- First environment: Environment that includes domestic premises, and establishments directly connected without intermediate transformers to a lowvoltage power supply network which supplies buildings used for domestic purposes
- Second environment: Environment that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes

Drives are divided into the following four categories based on the intended application environment.

 Category C1 drive: Power drive system (PDS) with rated voltage less than 1000 V, intended for use in the first environment

- Category C2 drive: PDS with rated voltage less than 1000 V, which is neither a plugin device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by professionals
- Category C3 drive: PDS with rated voltage less than 1000 V, intended for use in the second environment and not intended for use in the first environment
- Category C4 drive: PDS with rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment

#### 5.2.2 Requirements for Compliance with LVD

The drive has been tested in accordance with EN61800-5-1 to determine compliance with LVD. Observe the following requirements to enable machines and devices integrated with this drive to comply with LVD.

#### **Installation location**

Install the drive in a place with overvoltage category III and pollution degree 1 or 2 as specified by IEC 60664-1.

#### Installation environment

For requirements of the installation environment, see "2.1.2 Installation Environment" on page 29.

### Requirements of IP rating

The drive must be installed in a fireproof cabinet with doors that provide effective electrical and mechanical protection. The installation must conform to local and regional laws and regulations and relevant IEC standards.

Drives (IP20) intended to be installed inside the cabinet must be installed in a structure that prevents intrusion of unwanted objects from the top and the front.

### Main circuit wiring requirements

For wiring requirements of main circuit terminals, see "3.5.2 Main Circuit Wiring Requirements" on page 83.

### **Protective device requirements**

To comply with EN 61800-5-1, install a fuse/circuit breaker on the input side of the drive to prevent accidents caused by short circuit in the internal circuit.

For recommended fuse/circuit breaker models, see Chapter "Optional Parts" in "SV660P Series Servo Drive Selection Guide".

#### 5.3 UL&cUL Certification



Figure 5-2 UL/cUL mark

The UL/cUL mark is commonly applied to products sold in United States and Canada. It indicates that UL has performed product tests and evaluation, and determined that their stringent standards have been met. For a product to receive UL/cUL certification, the main components inside the product must also be UL certificated.

The drive has been tested in accordance with UL 61800–5–1 and CSA C22.2 No. 274-17 to determine compliance with UL/cUL standards. Observe the following requirements to enable machines and devices integrated with this drive to comply with UL/cUL standards.

#### Installation location

Install the drive in a place with overvoltage category III and pollution degree 1 or 2 as specified by UL61800–5–1.

#### Ambient temperature

Keep the ambient temperature within the following range based on the IP rating: Ambient temperature for open-type drives: 0°C to 50°C

#### Installation requirements

Installation requirements for open-type drives:

SV660P series servo drives are open-type drives that must be installed in a fireproof cabinet with the housing that provides effective electrical and mechanical protection. The installation must conform to local laws and regulations and related NEC requirements.

### Main circuit wiring requirements



On-site installation of output terminals (such as P⊕, C, and NΘ) is not allowed.

- Terminals P⊕, C, and NΘ are used to connect optional parts. Do not connect these terminals to an AC power supply.
- To protect the main circuit, phase power separate and cover the surface that may come into contact with the main circuit.
- Do not allow unwanted objects from entering the wiring part of the terminal block.
- Do not solder the twisted conductors.
- The tightening torque may vary with terminals. Tighten terminal screws with the specified tightening torque. You can use a torque screwdriver, torque ratchet, or torque wrench to tighten terminal screws.
- When using an electric screwdriver to tighten terminal screws, set the electric screwdriver to low speed to prevent damage to the terminal screws.
- Tighten the terminal screws with an angle not higher than 5°. Failure to comply may damage the terminal screws.

#### **Control circuit wiring requirements**

Observe the requirements in standard UL 508 during wiring.

#### Cable requirements

Cable dimensions must be compliant with requirements in NEC (National Electric Code) and CEC (Canadian Electrical Code) Part I and local regulations.

- Use cables with copper conductors.
- It is recommended to use indoor PVC cables with a voltage class of 600 V and a maximum temperature of 75°C in continuous operation under the following conditions:
  - Ambient temperature: < 40°C
  - Working normally at rated values

If the recommended cable specifications for peripheral devices or optional parts exceed the applicable cable specification range, contact Inovance.

#### Cable selection

To comply with UL61800-5-1 and CSA C22.2 No. 274-17, power cables used for SV660P series servo drives must meet the following requirements:

- Compliant with NEC and Table 310-16 of NFPA70
- Comprised of copper conductors with a rated temperature not lower than 75°C (167°F)
- 14 AWG or higher
- With a rated voltage not lower than the rated voltage of the servo drive

It is recommended to use cables compliant with UL758 Style 2517 and Style 2586 as motor main circuit cables.

### **Protective device requirements**

To comply with UL 61800-5-1, install a fuse/circuit breaker on the input side of the drive to prevent accidents caused by short circuit in the internal circuit.

Install sufficient protective devices against short circuit in branch circuits according to applicable regulations and this guide. The drive is applicable to circuits with a rated breaking capacity lower than 5000 A and a maximum voltage of 480 VAC (400 V class).

#### Note

The following tables list recommendations for different types of fuses and circuit breakers.

| Fuse type: Semiconductor Fuse |                      |                           |                                                    |          |         |         |
|-------------------------------|----------------------|---------------------------|----------------------------------------------------|----------|---------|---------|
| Servo Drive<br>Size           | Servo Drive<br>Model | Rated<br>Input<br>Current | Recommended Fuse<br>(UL-compliant FWH Series Fuse) |          |         |         |
|                               |                      |                           | Manufacturer                                       | Model    | Rated   | Rated   |
|                               |                      |                           |                                                    |          | Voltage | Current |
|                               | Three-phase 380 V    |                           |                                                    |          |         |         |
| Size E                        | SV660P<br>T017I      | 12 A                      | COOPER<br>BUSSMANN LLC                             | FWH-50B  | 500 V   | 50 A    |
|                               | SV660P<br>T021I      | 16 A                      |                                                    | FWH-70B  | 500 V   | 70 A    |
|                               | SV660P<br>T026I      | 21 A                      |                                                    | FWH-125B | 500 V   | 125 A   |

| Circuit Breaker Type: Inverse Time Circuit Breaker |                      |                           |                                                     |                   |                  |                  |
|----------------------------------------------------|----------------------|---------------------------|-----------------------------------------------------|-------------------|------------------|------------------|
| Servo Drive                                        | Servo Drive<br>Model | Rated<br>Input<br>Current | Recommended Fuse<br>(UL-compliant 3VA6 Series Fuse) |                   |                  |                  |
| Size                                               |                      |                           | Manufacturer                                        | Model             | Rated<br>Voltage | Rated<br>Current |
|                                                    | Single-phase 220 V   |                           |                                                     |                   |                  |                  |
| C: A                                               | SV660PS1<br>R6I      | 2.3 A                     | SIEMENS AG                                          | 3VA6140-<br>6HL31 | 480 V            | 40 A             |
| Size A                                             | SV660PS2<br>R8I      | 4.0 A                     |                                                     | 3VA6140-<br>6HL31 | 480 V            | 40 A             |
| Size B                                             | SV660PS5<br>R5I      | 7.9 A                     |                                                     | 3VA6140-<br>6HL31 | 480 V            | 40 A             |
| Size C                                             | SV660PS7<br>R6I      | 9.6 A                     |                                                     | 3VA6210-<br>6HL31 | 480 V            | 100 A            |
| Size D                                             | SV660P<br>S012I      | 12.8 A                    |                                                     | 3VA6210-<br>6HL31 | 480 V            | 100 A            |
| Three-phase 220 V                                  |                      |                           |                                                     |                   |                  |                  |

|             | Circuit Breaker Type: Inverse Time Circuit Breaker |                           |                                                     |                   |                  |                  |
|-------------|----------------------------------------------------|---------------------------|-----------------------------------------------------|-------------------|------------------|------------------|
| Servo Drive | Servo Drive<br>Model                               | Rated<br>Input<br>Current | Recommended Fuse<br>(UL-compliant 3VA6 Series Fuse) |                   |                  |                  |
| Size        |                                                    |                           | Manufacturer                                        | Model             | Rated<br>Voltage | Rated<br>Current |
| Size C      | SV660PS7<br>R6I                                    | 5.1 A                     | SIEMENS AG                                          | 3VA6210-<br>6HL31 | 480 V            | 100 A            |
| Size D      | SV660P<br>S012I                                    | 8.0 A                     | SILMENS AG                                          | 3VA6210-<br>6HL31 | 480 V            | 100 A            |
|             |                                                    |                           | Three-phase 380 V                                   | /                 |                  |                  |
| Size C      | SV660PT3<br>R5I                                    | 2.4 A                     | SIEMENS AG                                          | 3VA6210-<br>6HL31 | 480 V            | 100 A            |
| Size C      | SV660PT5<br>R4I                                    | 3.6 A                     |                                                     | 3VA6210-<br>6HL31 | 480 V            | 100 A            |
| Size D      | SV660PT8<br>R4I                                    | 5.6 A                     |                                                     | 3VA6210-<br>6HL31 | 480 V            | 100 A            |
|             | SV660P<br>T012I                                    | 8.0 A                     |                                                     | 3VA6210-<br>6HL31 | 480 V            | 100 A            |

# 6 Appendix 2 Common EMC Problems and Solutions

# 6.1 Malfunction of the Residual Current Device (RCD)

If an RCD is needed, select the RCD according to the following requirements:

- The drive may generate DC leakage current in the protective conductor, a B-type RCD therefore must be used.
- The drive may generate high-frequency leakage current during operation. To prevent malfunction of the RCD, install an RCD with tripping current not lower than 100 mA for each servo drive.
- When multiple drives connected in parallel share one RCD, select an RCD with tripping current not lower than 300 mA.
- Recommended RCD manufacturers are Siemens and Schneider.

When malfunction occurs on the RCD, take the following measures.

Table 6-1 Measures against leakage current

| Symptom                         | Possible Cause                                                                          | Measure                                                                                                                                                                                                     |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                 | The anti-interference performance of the RCD is weak.                                   |                                                                                                                                                                                                             |  |  |
| The RCD trips at                | The tripping current of the RCD is too low.                                             | • It is recommended to use Siemens or Schneider RCDs.                                                                                                                                                       |  |  |
| the moment of power-on.         | An unbalanced load is connected to the rear end of the RCD.                             | <ul> <li>It is recommended to use an RCD with<br/>a higher tripping current.</li> <li>Move the unbalanced load to the front</li> </ul>                                                                      |  |  |
|                                 | The capacitance of the front end of the servo drive against the ground is too high.     | end of the RCD.                                                                                                                                                                                             |  |  |
|                                 | The anti-interference performance of the RCD is weak.                                   | <ul> <li>It is recommended to use Siemens or<br/>Schneider RCDs.</li> <li>It is recommended to use an RCD with<br/>a higher tripping current.</li> <li>Install a simple filter on the input side</li> </ul> |  |  |
|                                 | The tripping current of the RCD is too low.                                             |                                                                                                                                                                                                             |  |  |
| The RCD trips during operation. | An unbalanced load is connected to the rear end of the RCD.                             | of the servo drive and wind magnetic<br>rings on the LN and RST cables near<br>the RCD, as shown in "Figure 6–1                                                                                             |  |  |
|                                 | The distributed capacitance of the motor cable or motor against the ground is too high. | <ul> <li>Magnetic ring on the input side" on page 152.</li> <li>Reduce the carrier frequency without compromising the performance.</li> <li>Reduce the length of motor cables.</li> </ul>                   |  |  |

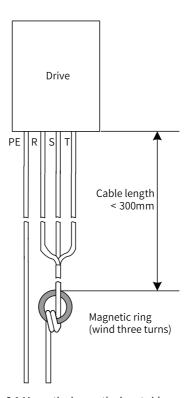



Figure 6-1 Magnetic ring on the input side

# 6.2 Harmonic Suppression

To suppress harmonics and improve the power factor to allow the drive to fulfill the standards, install an AC input reactor on the input side of the drive. For the reactor model and installation mode, see "2.3.2 Instructions for Installing the AC Input Reactor" on page 52.

### 6.3 Control Circuit Interference

# 6.3.1 High-speed Pulse Interference

Take the measures listed in the following table to suppress interference.

| No. | Measure                                                                                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 1   | Used shielded twisted pair cables with both ends of the cable grounded (see "3.8.1 Wiring of I/O Signal Cables" on page 108). |
| 2   | Connect the motor enclosure to the PE terminal of the drive.                                                                  |

| No. | Measure                                                                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | Connect the PE terminal of the drive to the PE terminal of the mains power supply.                                                                                                 |
| 4   | Add an equipotential bonding grounding cable between the host controller and drive (see "Figure 3–26" on page 96).                                                                 |
| 5   | Separate signal cables from power cables with a distance of at least 30 cm.                                                                                                        |
| 6   | Install the ferrite clamp or wind the magnetic ring on the signal cable by one or two turns. (see "2.3.4 Instructions for Installing Magnetic Ring and Ferrite Clamp" on page 53). |
| 7   | Install the magnetic ring on the output side (UVW) of the drive by two to four turns (see "2.3.4 Instructions for Installing Magnetic Ring and Ferrite Clamp" on page 53).         |
| 8   | Use shielded power cables and ground the shield properly.                                                                                                                          |

# 6.3.2 I/O Signal Interference

The drive generates strong interference during operation. Although EMC measures are taken, interference may still exist due to improper wiring or grounding during use. When the drive disturbs or is disturbed by other devices, adopt the following measures.

| No. | Measure                                                                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Use shielded I/O signal cables with the shield connected to the PE terminal. For details, see "3.8.1 Wiring of I/O Signal Cables" on page 108.                                             |
| 2   | Connect the PE terminal of the motor to the PE terminal of the drive, and connect the PE terminal of the drive to the PE terminal of the mains power supply.                               |
| 3   | Add an equipotential bonding grounding cable between the host controller and drive (see "Cabinet system grounding" on page 95).                                                            |
| 4   | Install the magnetic ring on the output side (UVW) of the drive by two to four turns (see "2.3.4 Instructions for Installing Magnetic Ring and Ferrite Clamp" on page 53).                 |
| 5   | Increase the capacitance of the capacitor for low-speed DIs. A capacitance up to 0.1 uF is recommended, as shown in "Figure 6–2 I/O signal cables with capacitance increased" on page 154. |
| 6   | Increase the capacitance of the capacitor between AI and GND. A capacitance up to 0.22 uF is recommended.                                                                                  |
| 7   | Install a ferrite clamp or wind a magnetic ring on the signal cable by one or two turns. (see "2.3.4 Instructions for Installing Magnetic Ring and Ferrite Clamp" on page 53).             |
| 8   | Use shielded power cables and ground the shield properly.                                                                                                                                  |

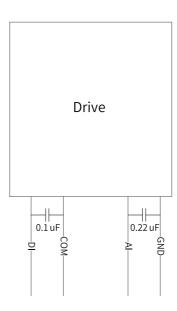



Figure 6-2 I/O signal cables with capacitance increased

# 6.4 RS485&CAN Communication Interference

Take the measures listed in the following table to suppress interference.

| No. | Measure                                                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Install a 120 $\Omega$ termination resistor on each end of the bus.                                                                           |
| 2   | Replace with multi-conductor shielded twisted pair cables and ground both ends of the shield.                                                 |
| 3   | Separate communication cables from power cables with a distance of at least 30 cm.                                                            |
| 4   | Adopt daisy chain mode for multi-node communication layout.                                                                                   |
| 5   | Add an equipotential bonding grounding cable between nodes during multi-node communication (see "Cabinet system grounding" on page 95).       |
| 6   | Install ferrite clamps on both sides of the communication cable or wind the magnetic ring by one or two turns (see "Figure 2–21" on page 54). |
| 7   | Install the magnetic ring on the output side (UVW) of the servo drive by two to four turns (see "Figure 2–20" on page 53).                    |
| 8   | Use shielded power cables and ground the shield properly.                                                                                     |

## Shenzhen Inovance Technology Co., Ltd.

Add.: Building E, Hongwei Industry Park, Liuxian Road, Baocheng No. 70 Zone, Bao'an District, Shenzhen

Tel: +86-755-2979 9595 Fax: +86-755-2961 9897 http://www.inovance.com

**Suzhou Inovance Technology Co., Ltd.** Add.: No. 16 Youxiang Road, Yuexi Town, Wuzhong

District, Suzhou 215104, P.R. China

Tel: +86-755-2979 6666 Fax: +86-755-2961 6720 http://www.inovance.com



19011391A00